MRPT  1.9.9
CRandomFieldGridMap2D.h
Go to the documentation of this file.
1 /* +------------------------------------------------------------------------+
2  | Mobile Robot Programming Toolkit (MRPT) |
3  | http://www.mrpt.org/ |
4  | |
5  | Copyright (c) 2005-2018, Individual contributors, see AUTHORS file |
6  | See: http://www.mrpt.org/Authors - All rights reserved. |
7  | Released under BSD License. See details in http://www.mrpt.org/License |
8  +------------------------------------------------------------------------+ */
9 
10 #ifndef CRandomFieldGridMap2D_H
11 #define CRandomFieldGridMap2D_H
12 
14 #include <mrpt/img/CImage.h>
16 #include <mrpt/math/CMatrixD.h>
19 #include <mrpt/maps/CMetricMap.h>
21 
22 #include <list>
23 
24 namespace mrpt::maps
25 {
26 class COccupancyGridMap2D;
27 
28 // Pragma defined to ensure no structure packing: since we'll serialize
29 // TRandomFieldCell to streams, we want it not to depend on compiler options,
30 // etc.
31 #if defined(MRPT_IS_X86_AMD64)
32 #pragma pack(push, 1)
33 #endif
34 
35 /** The contents of each cell in a CRandomFieldGridMap2D map.
36  * \ingroup mrpt_maps_grp
37  **/
39 {
40  /** Constructor */
41  TRandomFieldCell(double kfmean_dm_mean = 1e-20, double kfstd_dmmeanw = 0)
42  : kf_mean(kfmean_dm_mean),
43  kf_std(kfstd_dmmeanw),
44  dmv_var_mean(0),
45  last_updated(mrpt::system::now()),
46  updated_std(kfstd_dmmeanw)
47  {
48  }
49 
50  // *Note*: Use unions to share memory between data fields, since only a set
51  // of the variables will be used for each mapping strategy.
52  // You can access to a "TRandomFieldCell *cell" like: cell->kf_mean,
53  // cell->kf_std, etc..
54  // but accessing cell->kf_mean would also modify (i.e. ARE the same memory
55  // slot) cell->dm_mean, for example.
56 
57  // Note 2: If the number of type of fields are changed in the future,
58  // *PLEASE* also update the writeToStream() and readFromStream() methods!!
59 
60  union {
61  /** [KF-methods only] The mean value of this cell */
62  double kf_mean;
63  /** [Kernel-methods only] The cumulative weighted readings of this cell
64  */
65  double dm_mean;
66  /** [GMRF only] The mean value of this cell */
67  double gmrf_mean;
68  };
69 
70  union {
71  /** [KF-methods only] The standard deviation value of this cell */
72  double kf_std;
73  /** [Kernel-methods only] The cumulative weights (concentration = alpha
74  * * dm_mean / dm_mean_w + (1-alpha)*r0 ) */
75  double dm_mean_w;
76  double gmrf_std;
77  };
78 
79  /** [Kernel DM-V only] The cumulative weighted variance of this cell */
80  double dmv_var_mean;
81 
82  /** [Dynamic maps only] The timestamp of the last time the cell was updated
83  */
85  /** [Dynamic maps only] The std cell value that was updated (to be used in
86  * the Forgetting_curve */
87  double updated_std;
88 };
89 
90 #if defined(MRPT_IS_X86_AMD64)
91 #pragma pack(pop)
92 #endif
93 
94 /** CRandomFieldGridMap2D represents a 2D grid map where each cell is associated
95  *one real-valued property which is estimated by this map, either
96  * as a simple value or as a probility distribution (for each cell).
97  *
98  * There are a number of methods available to build the MRF grid-map,
99  *depending on the value of
100  * `TMapRepresentation maptype` passed in the constructor.
101  *
102  * The following papers describe the mapping alternatives implemented here:
103  * - `mrKernelDM`: A Gaussian kernel-based method. See:
104  * - "Building gas concentration gridmaps with a mobile robot",
105  *Lilienthal,
106  *A. and Duckett, T., Robotics and Autonomous Systems, v.48, 2004.
107  * - `mrKernelDMV`: A kernel-based method. See:
108  * - "A Statistical Approach to Gas Distribution Modelling with Mobile
109  *Robots--The Kernel DM+ V Algorithm", Lilienthal, A.J. and Reggente, M. and
110  *Trincavelli, M. and Blanco, J.L. and Gonzalez, J., IROS 2009.
111  * - `mrKalmanFilter`: A "brute-force" approach to estimate the entire map
112  *with a dense (linear) Kalman filter. Will be very slow for mid or large maps.
113  *It's provided just for comparison purposes, not useful in practice.
114  * - `mrKalmanApproximate`: A compressed/sparse Kalman filter approach.
115  *See:
116  * - "A Kalman Filter Based Approach to Probabilistic Gas Distribution
117  *Mapping", JL Blanco, JG Monroy, J Gonzalez-Jimenez, A Lilienthal, 28th
118  *Symposium On Applied Computing (SAC), 2013.
119  * - `mrGMRF_SD`: A Gaussian Markov Random Field (GMRF) estimator, with
120  *these
121  *constraints:
122  * - `mrGMRF_SD`: Each cell only connected to its 4 immediate neighbors
123  *(Up,
124  *down, left, right).
125  * - (Removed in MRPT 1.5.0: `mrGMRF_G`: Each cell connected to a
126  *square
127  *area
128  *of neighbors cells)
129  * - See papers:
130  * - "Time-variant gas distribution mapping with obstacle
131  *information",
132  *Monroy, J. G., Blanco, J. L., & Gonzalez-Jimenez, J. Autonomous Robots,
133  *40(1), 1-16, 2016.
134  *
135  * Note that this class is virtual, since derived classes still have to
136  *implement:
137  * - mrpt::maps::CMetricMap::internal_computeObservationLikelihood()
138  * - mrpt::maps::CMetricMap::internal_insertObservation()
139  * - Serialization methods: writeToStream() and readFromStream()
140  *
141  * [GMRF only] A custom connectivity pattern between cells can be defined by
142  *calling setCellsConnectivity().
143  *
144  * \sa mrpt::maps::CGasConcentrationGridMap2D,
145  *mrpt::maps::CWirelessPowerGridMap2D, mrpt::maps::CMetricMap,
146  *mrpt::containers::CDynamicGrid, The application icp-slam,
147  *mrpt::maps::CMultiMetricMap
148  * \ingroup mrpt_maps_grp
149  */
151  : public mrpt::maps::CMetricMap,
152  public mrpt::containers::CDynamicGrid<TRandomFieldCell>,
154 {
156 
158  public:
159  /** Calls the base CMetricMap::clear
160  * Declared here to avoid ambiguity between the two clear() in both base
161  * classes.
162  */
163  inline void clear() { CMetricMap::clear(); }
164  // This method is just used for the ::saveToTextFile() method in base class.
165  float cell2float(const TRandomFieldCell& c) const override
166  {
167  return c.kf_mean;
168  }
169 
170  /** The type of map representation to be used, see CRandomFieldGridMap2D for
171  * a discussion.
172  */
174  {
175  /** Gaussian kernel-based estimator (see discussion in
176  mrpt::maps::CRandomFieldGridMap2D) */
178  /** Another alias for "mrKernelDM", for backwards compatibility (see
179  discussion in mrpt::maps::CRandomFieldGridMap2D) */
180  mrAchim = 0,
181  /** "Brute-force" Kalman filter (see discussion in
182  mrpt::maps::CRandomFieldGridMap2D) */
184  /** (see discussion in mrpt::maps::CRandomFieldGridMap2D) */
186  /** Double mean + variance Gaussian kernel-based estimator (see
187  discussion in mrpt::maps::CRandomFieldGridMap2D) */
189  // Removed in MRPT 1.5.0: mrGMRF_G, //!< Gaussian Markov Random Field,
190  // Gaussian prior weights between neighboring cells up to a certain
191  // distance (see discussion in mrpt::maps::CRandomFieldGridMap2D)
192  /** Gaussian Markov Random Field, squared differences prior weights
193  between 4 neighboring cells (see discussion in
194  mrpt::maps::CRandomFieldGridMap2D) */
196  };
197 
198  /** Constructor */
200  TMapRepresentation mapType = mrKernelDM, double x_min = -2,
201  double x_max = 2, double y_min = -2, double y_max = 2,
202  double resolution = 0.1);
203 
204  /** Destructor */
205  virtual ~CRandomFieldGridMap2D();
206 
207  /** Returns true if the map is empty/no observation has been inserted (in
208  * this class it always return false,
209  * unless redefined otherwise in base classes)
210  */
211  virtual bool isEmpty() const override;
212 
213  /** Save the current map as a graphical file (BMP,PNG,...).
214  * The file format will be derived from the file extension (see
215  *CImage::saveToFile )
216  * It depends on the map representation model:
217  * mrAchim: Each pixel is the ratio \f$ \sum{\frac{wR}{w}} \f$
218  * mrKalmanFilter: Each pixel is the mean value of the Gaussian that
219  *represents each cell.
220  *
221  * \sa \a getAsBitmapFile()
222  */
223  virtual void saveAsBitmapFile(const std::string& filName) const;
224 
225  /** Returns an image just as described in \a saveAsBitmapFile */
226  virtual void getAsBitmapFile(mrpt::img::CImage& out_img) const;
227 
228  /** Like saveAsBitmapFile(), but returns the data in matrix form (first row
229  * in the matrix is the upper (y_max) part of the map) */
230  virtual void getAsMatrix(mrpt::math::CMatrixDouble& out_mat) const;
231 
232  /** Parameters common to any derived class.
233  * Derived classes should derive a new struct from this one, plus "public
234  * utils::CLoadableOptions",
235  * and call the internal_* methods where appropiate to deal with the
236  * variables declared here.
237  * Derived classes instantions of their "TInsertionOptions" MUST set the
238  * pointer "m_insertOptions_common" upon construction.
239  */
241  {
242  /** Default values loader */
244 
245  /** See utils::CLoadableOptions */
248  const std::string& section);
249 
250  /** See utils::CLoadableOptions */
251  void internal_dumpToTextStream_common(std::ostream& out) const;
252 
253  /** @name Kernel methods (mrKernelDM, mrKernelDMV)
254  @{ */
255  /** The sigma of the "Parzen"-kernel Gaussian */
256  float sigma;
257  /** The cutoff radius for updating cells. */
259  /** Limits for normalization of sensor readings. */
260  float R_min, R_max;
261  /** [DM/DM+V methods] The scaling parameter for the confidence "alpha"
262  * values (see the IROS 2009 paper; see CRandomFieldGridMap2D) */
264  /** @} */
265 
266  /** @name Kalman-filter methods (mrKalmanFilter, mrKalmanApproximate)
267  @{ */
268  /** The "sigma" for the initial covariance value between cells (in
269  * meters). */
270  float KF_covSigma;
271  /** The initial standard deviation of each cell's concentration (will be
272  * stored both at each cell's structure and in the covariance matrix as
273  * variances in the diagonal) (in normalized concentration units). */
275  /** The sensor model noise (in normalized concentration units). */
277  /** The default value for the mean of cells' concentration. */
279  /** [mrKalmanApproximate] The size of the window of neighbor cells. */
281  /** @} */
282 
283  /** @name Gaussian Markov Random Fields methods (mrGMRF_SD)
284  @{ */
285  /** The information (Lambda) of fixed map constraints */
287  /** The initial information (Lambda) of each observation (this
288  * information will decrease with time) */
290  /** The loss of information of the observations with each iteration */
292 
293  /** whether to use information of an occupancy_gridmap map for building
294  * the GMRF */
296  /** simplemap_file name of the occupancy_gridmap */
298  /** image name of the occupancy_gridmap */
300  /** occupancy_gridmap resolution: size of each pixel (m) */
302  /** Pixel coordinates of the origin for the occupancy_gridmap */
304  /** Pixel coordinates of the origin for the occupancy_gridmap */
306 
307  /** (Default:-inf,+inf) Saturate the estimated mean in these limits */
309  /** (Default:false) Skip the computation of the variance, just compute
310  * the mean */
312  /** @} */
313  };
314 
315  /** Changes the size of the grid, maintaining previous contents. \sa setSize
316  */
317  virtual void resize(
318  double new_x_min, double new_x_max, double new_y_min, double new_y_max,
319  const TRandomFieldCell& defaultValueNewCells,
320  double additionalMarginMeters = 1.0f) override;
321 
322  /** Changes the size of the grid, erasing previous contents.
323  * \param[in] connectivity_descriptor Optional user-supplied object that
324  * will visit all grid cells to define their connectivity with neighbors and
325  * the strength of existing edges. If present, it overrides all options in
326  * insertionOptions
327  * \sa resize
328  */
329  virtual void setSize(
330  const double x_min, const double x_max, const double y_min,
331  const double y_max, const double resolution,
332  const TRandomFieldCell* fill_value = nullptr);
333 
334  /** Base class for user-supplied objects capable of describing cells
335  * connectivity, used to build prior factors of the MRF graph. \sa
336  * setCellsConnectivity() */
338  {
341  virtual ~ConnectivityDescriptor();
342 
343  /** Implement the check of whether node i=(icx,icy) is connected with
344  * node j=(jcx,jcy).
345  * This visitor method will be called only for immediate neighbors.
346  * \return true if connected (and the "information" value should be
347  * also updated in out_edge_information), false otherwise.
348  */
349  virtual bool getEdgeInformation(
350  /** The parent map on which we are running */
351  const CRandomFieldGridMap2D* parent,
352  /** (cx,cy) for node "i" */
353  size_t icx, size_t icy,
354  /** (cx,cy) for node "j" */
355  size_t jcx, size_t jcy,
356  /** Must output here the inverse of the variance of the constraint
357  edge. */
358  double& out_edge_information) = 0;
359  };
360 
361  /** Sets a custom object to define the connectivity between cells. Must call
362  * clear() or setSize() afterwards for the changes to take place. */
364  const ConnectivityDescriptor::Ptr& new_connectivity_descriptor);
365 
366  /** See docs in base class: in this class this always returns 0 */
368  const mrpt::maps::CMetricMap* otherMap,
369  const mrpt::poses::CPose3D& otherMapPose,
370  const TMatchingRatioParams& params) const override;
371 
372  /** The implementation in this class just calls all the corresponding method
373  * of the contained metric maps */
375  const std::string& filNamePrefix) const override;
376 
377  /** Save a matlab ".m" file which represents as 3D surfaces the mean and a
378  * given confidence level for the concentration of each cell.
379  * This method can only be called in a KF map model.
380  * \sa getAsMatlab3DGraphScript */
381  virtual void saveAsMatlab3DGraph(const std::string& filName) const;
382 
383  /** Return a large text block with a MATLAB script to plot the contents of
384  * this map \sa saveAsMatlab3DGraph
385  * This method can only be called in a KF map model */
386  void getAsMatlab3DGraphScript(std::string& out_script) const;
387 
388  /** Returns a 3D object representing the map (mean) */
389  virtual void getAs3DObject(
390  mrpt::opengl::CSetOfObjects::Ptr& outObj) const override;
391 
392  /** Returns two 3D objects representing the mean and variance maps */
393  virtual void getAs3DObject(
395  mrpt::opengl::CSetOfObjects::Ptr& varObj) const;
396 
397  /** Return the type of the random-field grid map, according to parameters
398  * passed on construction. */
400 
401  /** Direct update of the map with a reading in a given position of the map,
402  * using
403  * the appropriate method according to mapType passed in the constructor.
404  *
405  * This is a direct way to update the map, an alternative to the generic
406  * insertObservation() method which works with mrpt::obs::CObservation
407  * objects.
408  */
410  /** [in] The value observed in the (x,y) position */
411  const double sensorReading,
412  /** [in] The (x,y) location */
413  const mrpt::math::TPoint2D& point,
414  /** [in] Run a global map update after inserting this observatin
415  (algorithm-dependant) */
416  const bool update_map = true,
417  /** [in] Whether the observation "vanishes" with time (false) or not
418  (true) [Only for GMRF methods] */
419  const bool time_invariant = true,
420  /** [in] The uncertainty (standard deviation) of the reading.
421  Default="0.0" means use the default settings per map-wide parameters.
422  */
423  const double reading_stddev = .0);
424 
426  {
429  };
430 
431  /** Returns the prediction of the measurement at some (x,y) coordinates, and
432  * its certainty (in the form of the expected variance). */
433  virtual void predictMeasurement(
434  /** [in] Query X coordinate */
435  const double x,
436  /** [in] Query Y coordinate */
437  const double y,
438  /** [out] The output value */
439  double& out_predict_response,
440  /** [out] The output variance */
441  double& out_predict_response_variance,
442  /** [in] Whether to renormalize the prediction to a predefined
443  interval (`R` values in insertionOptions) */
444  bool do_sensor_normalization,
445  /** [in] Interpolation method */
446  const TGridInterpolationMethod interp_method = gimNearest);
447 
448  /** Return the mean and covariance vector of the full Kalman filter estimate
449  * (works for all KF-based methods). */
450  void getMeanAndCov(
451  mrpt::math::CVectorDouble& out_means,
452  mrpt::math::CMatrixDouble& out_cov) const;
453 
454  /** Return the mean and STD vectors of the full Kalman filter estimate
455  * (works for all KF-based methods). */
456  void getMeanAndSTD(
457  mrpt::math::CVectorDouble& out_means,
458  mrpt::math::CVectorDouble& out_STD) const;
459 
460  /** Load the mean and STD vectors of the full Kalman filter estimate (works
461  * for all KF-based methods). */
462  void setMeanAndSTD(
463  mrpt::math::CVectorDouble& out_means,
464  mrpt::math::CVectorDouble& out_STD);
465 
466  /** Run the method-specific procedure required to ensure that the mean &
467  * variances are up-to-date with all inserted observations. */
468  void updateMapEstimation();
469 
470  void enableVerbose(bool enable_verbose)
471  {
473  }
474  bool isEnabledVerbose() const
475  {
477  }
478 
479  void enableProfiler(bool enable = true)
480  {
481  this->m_gmrf.enableProfiler(enable);
482  }
483  bool isProfilerEnabled() const { return this->m_gmrf.isProfilerEnabled(); }
484  protected:
486 
487  /** Common options to all random-field grid maps: pointer that is set to the
488  * derived-class instance of "insertOptions" upon construction of this
489  * class. */
491 
492  /** Get the part of the options common to all CRandomFieldGridMap2D classes
493  */
496 
497  /** The map representation type of this map, as passed in the constructor */
499 
500  /** The whole covariance matrix, used for the Kalman Filter map
501  * representation. */
503 
504  /** The compressed band diagonal matrix for the KF2 implementation.
505  * The format is a Nx(W^2+2W+1) matrix, one row per cell in the grid map
506  * with the
507  * cross-covariances between each cell and half of the window around it
508  * in the grid.
509  */
511  /** Only for the KF2 implementation. */
513 
514  /** @name Auxiliary vars for DM & DM+V methods
515  @{ */
517  std::vector<float> m_DM_gaussWindow;
520  /** @} */
521 
522  /** Empty: default */
524 
526 
529  {
530  /** Observation value */
531  double obsValue;
532  /** "Information" of the observation (=inverse of the variance) */
533  double Lambda;
534  /** whether the observation will lose weight (lambda) as time goes on
535  * (default false) */
537 
538  double evaluateResidual() const override;
539  double getInformation() const override;
540  void evalJacobian(double& dr_dx) const override;
541 
543  : obsValue(.0), Lambda(.0), time_invariant(false), m_parent(&parent)
544  {
545  }
546 
547  private:
549  };
550 
553  {
554  /** "Information" of the observation (=inverse of the variance) */
555  double Lambda;
556 
557  double evaluateResidual() const override;
558  double getInformation() const override;
559  void evalJacobian(double& dr_dx_i, double& dr_dx_j) const override;
560 
562  : Lambda(.0), m_parent(&parent)
563  {
564  }
565 
566  private:
568  };
569 
570  // Important: converted to a std::list<> so pointers are NOT invalidated
571  // upon deletion.
572  /** Vector with the active observations and their respective Information */
573  std::vector<std::list<TObservationGMRF>> m_mrf_factors_activeObs;
574  /** Vector with the precomputed priors for each GMRF model */
575  std::deque<TPriorFactorGMRF> m_mrf_factors_priors;
576 
577  /** The implementation of "insertObservation" for Achim Lilienthal's map
578  * models DM & DM+V.
579  * \param normReading Is a [0,1] normalized concentration reading.
580  * \param point Is the sensor location on the map
581  * \param is_DMV = false -> map type is Kernel DM; true -> map type is DM+V
582  */
584  double normReading, const mrpt::math::TPoint2D& point, bool is_DMV);
585 
586  /** The implementation of "insertObservation" for the (whole) Kalman Filter
587  * map model.
588  * \param normReading Is a [0,1] normalized concentration reading.
589  * \param point Is the sensor location on the map
590  */
592  double normReading, const mrpt::math::TPoint2D& point);
593 
594  /** The implementation of "insertObservation" for the Efficient Kalman
595  * Filter map model.
596  * \param normReading Is a [0,1] normalized concentration reading.
597  * \param point Is the sensor location on the map
598  */
600  double normReading, const mrpt::math::TPoint2D& point);
601 
602  /** The implementation of "insertObservation" for the Gaussian Markov Random
603  * Field map model.
604  * \param normReading Is a [0,1] normalized concentration reading.
605  * \param point Is the sensor location on the map
606  */
608  double normReading, const mrpt::math::TPoint2D& point,
609  const bool update_map, const bool time_invariant,
610  const double reading_information);
611 
612  /** solves the minimum quadratic system to determine the new concentration
613  * of each cell */
615 
616  /** Computes the confidence of the cell concentration (alpha) */
618  const TRandomFieldCell* cell) const;
619 
620  /** Computes the average cell concentration, or the overall average value if
621  * it has never been observed */
622  double computeMeanCellValue_DM_DMV(const TRandomFieldCell* cell) const;
623 
624  /** Computes the estimated variance of the cell concentration, or the
625  * overall average variance if it has never been observed */
626  double computeVarCellValue_DM_DMV(const TRandomFieldCell* cell) const;
627 
628  /** In the KF2 implementation, takes the auxiliary matrices and from them
629  * update the cells' mean and std values.
630  * \sa m_hasToRecoverMeanAndCov
631  */
632  void recoverMeanAndCov() const;
633 
634  /** Erase all the contents of the map */
635  virtual void internal_clear() override;
636 
637  /** Check if two cells of the gridmap (m_map) are connected, based on the
638  * provided occupancy gridmap*/
640  const mrpt::maps::COccupancyGridMap2D* m_Ocgridmap, size_t cxo_min,
641  size_t cxo_max, size_t cyo_min, size_t cyo_max, const size_t seed_cxo,
642  const size_t seed_cyo, const size_t objective_cxo,
643  const size_t objective_cyo);
644 };
645 
646 }
659 
660 #endif
661 
662 
void clear()
Erase all the contents of the map.
Definition: CMetricMap.cpp:31
Simple, scalar (1-dim) constraint (edge) for a GMRF.
std::string GMRF_gridmap_image_file
image name of the occupancy_gridmap
Gaussian kernel-based estimator (see discussion in mrpt::maps::CRandomFieldGridMap2D) ...
Parameters for CMetricMap::compute3DMatchingRatio()
float sigma
The sigma of the "Parzen"-kernel Gaussian.
void getMeanAndSTD(mrpt::math::CVectorDouble &out_means, mrpt::math::CVectorDouble &out_STD) const
Return the mean and STD vectors of the full Kalman filter estimate (works for all KF-based methods)...
A 2D grid of dynamic size which stores any kind of data at each cell.
Definition: CDynamicGrid.h:38
void clear()
Calls the base CMetricMap::clear Declared here to avoid ambiguity between the two clear() in both bas...
double evaluateResidual() const override
Return the residual/error of this observation.
This class is a "CSerializable" wrapper for "CMatrixTemplateNumeric<double>".
Definition: CMatrixD.h:22
unsigned __int16 uint16_t
Definition: rptypes.h:44
virtual void saveAsMatlab3DGraph(const std::string &filName) const
Save a matlab ".m" file which represents as 3D surfaces the mean and a given confidence level for the...
float KF_defaultCellMeanValue
The default value for the mean of cells&#39; concentration.
double getInformation() const override
Return the inverse of the variance of this constraint.
bool exist_relation_between2cells(const mrpt::maps::COccupancyGridMap2D *m_Ocgridmap, size_t cxo_min, size_t cxo_max, size_t cyo_min, size_t cyo_max, const size_t seed_cxo, const size_t seed_cyo, const size_t objective_cxo, const size_t objective_cyo)
Check if two cells of the gridmap (m_map) are connected, based on the provided occupancy gridmap...
Base class for user-supplied objects capable of describing cells connectivity, used to build prior fa...
void insertObservation_GMRF(double normReading, const mrpt::math::TPoint2D &point, const bool update_map, const bool time_invariant, const double reading_information)
The implementation of "insertObservation" for the Gaussian Markov Random Field map model...
void evalJacobian(double &dr_dx_i, double &dr_dx_j) const override
Returns the derivative of the residual wrt the node values.
std::vector< std::list< TObservationGMRF > > m_mrf_factors_activeObs
Vector with the active observations and their respective Information.
mrpt::math::CMatrixD m_cov
The whole covariance matrix, used for the Kalman Filter map representation.
void setMinLoggingLevel(const VerbosityLevel level)
Set the minimum logging level for which the incoming logs are going to be taken into account...
Column vector, like Eigen::MatrixX*, but automatically initialized to zeros since construction...
Definition: eigen_frwds.h:44
mrpt::system::TTimeStamp now()
A shortcut for system::getCurrentTime.
Definition: datetime.h:87
double Lambda
"Information" of the observation (=inverse of the variance)
mrpt::system::TTimeStamp last_updated
[Dynamic maps only] The timestamp of the last time the cell was updated
Double mean + variance Gaussian kernel-based estimator (see discussion in mrpt::maps::CRandomFieldGri...
TMapRepresentation
The type of map representation to be used, see CRandomFieldGridMap2D for a discussion.
void getMeanAndCov(mrpt::math::CVectorDouble &out_means, mrpt::math::CMatrixDouble &out_cov) const
Return the mean and covariance vector of the full Kalman filter estimate (works for all KF-based meth...
double gmrf_mean
[GMRF only] The mean value of this cell
double GMRF_lambdaPrior
The information (Lambda) of fixed map constraints.
float cutoffRadius
The cutoff radius for updating cells.
void enableVerbose(bool enable_verbose)
Another alias for "mrKernelDM", for backwards compatibility (see discussion in mrpt::maps::CRandomFie...
TMapRepresentation getMapType()
Return the type of the random-field grid map, according to parameters passed on construction.
void enableProfiler(bool enable=true)
void evalJacobian(double &dr_dx) const override
Returns the derivative of the residual wrt the node value.
virtual void getAs3DObject(mrpt::opengl::CSetOfObjects::Ptr &outObj) const override
Returns a 3D object representing the map (mean)
double computeMeanCellValue_DM_DMV(const TRandomFieldCell *cell) const
Computes the average cell concentration, or the overall average value if it has never been observed...
virtual bool getEdgeInformation(const CRandomFieldGridMap2D *parent, size_t icx, size_t icy, size_t jcx, size_t jcy, double &out_edge_information)=0
Implement the check of whether node i=(icx,icy) is connected with node j=(jcx,jcy).
void recoverMeanAndCov() const
In the KF2 implementation, takes the auxiliary matrices and from them update the cells&#39; mean and std ...
#define DEFINE_VIRTUAL_SERIALIZABLE(class_name)
This declaration must be inserted in virtual CSerializable classes definition:
void internal_dumpToTextStream_common(std::ostream &out) const
See utils::CLoadableOptions.
TMapRepresentation m_mapType
The map representation type of this map, as passed in the constructor.
mrpt::graphs::ScalarFactorGraph m_gmrf
CRandomFieldGridMap2D(TMapRepresentation mapType=mrKernelDM, double x_min=-2, double x_max=2, double y_min=-2, double y_max=2, double resolution=0.1)
Constructor.
double dm_mean_w
[Kernel-methods only] The cumulative weights (concentration = alpha
double getInformation() const override
Return the inverse of the variance of this constraint.
float KF_observationModelNoise
The sensor model noise (in normalized concentration units).
VerbosityLevel getMinLoggingLevel() const
TInsertionOptionsCommon * m_insertOptions_common
Common options to all random-field grid maps: pointer that is set to the derived-class instance of "i...
mrpt::Clock::time_point TTimeStamp
A system independent time type, it holds the the number of 100-nanosecond intervals since January 1...
Definition: datetime.h:40
bool time_invariant
whether the observation will lose weight (lambda) as time goes on (default false) ...
float R_min
Limits for normalization of sensor readings.
virtual void saveAsBitmapFile(const std::string &filName) const
Save the current map as a graphical file (BMP,PNG,...).
TRandomFieldCell(double kfmean_dm_mean=1e-20, double kfstd_dmmeanw=0)
Constructor.
This class allows loading and storing values and vectors of different types from a configuration text...
virtual bool isEmpty() const override
Returns true if the map is empty/no observation has been inserted (in this class it always return fal...
virtual void resize(double new_x_min, double new_x_max, double new_y_min, double new_y_max, const TRandomFieldCell &defaultValueNewCells, double additionalMarginMeters=1.0f) override
Changes the size of the grid, maintaining previous contents.
void updateMapEstimation_GMRF()
solves the minimum quadratic system to determine the new concentration of each cell ...
double kf_mean
[KF-methods only] The mean value of this cell
The contents of each cell in a CRandomFieldGridMap2D map.
void setMeanAndSTD(mrpt::math::CVectorDouble &out_means, mrpt::math::CVectorDouble &out_STD)
Load the mean and STD vectors of the full Kalman filter estimate (works for all KF-based methods)...
const GLubyte * c
Definition: glext.h:6313
Versatile class for consistent logging and management of output messages.
"Brute-force" Kalman filter (see discussion in mrpt::maps::CRandomFieldGridMap2D) ...
virtual void setSize(const double x_min, const double x_max, const double y_min, const double y_max, const double resolution, const TRandomFieldCell *fill_value=nullptr)
Changes the size of the grid, erasing previous contents.
void insertObservation_KernelDM_DMV(double normReading, const mrpt::math::TPoint2D &point, bool is_DMV)
The implementation of "insertObservation" for Achim Lilienthal&#39;s map models DM & DM+V.
float cell2float(const TRandomFieldCell &c) const override
double GMRF_lambdaObs
The initial information (Lambda) of each observation (this information will decrease with time) ...
double dm_sigma_omega
[DM/DM+V methods] The scaling parameter for the confidence "alpha" values (see the IROS 2009 paper; s...
#define MRPT_ENUM_TYPE_END()
Definition: TEnumType.h:78
void insertObservation_KF(double normReading, const mrpt::math::TPoint2D &point)
The implementation of "insertObservation" for the (whole) Kalman Filter map model.
virtual void getAsBitmapFile(mrpt::img::CImage &out_img) const
Returns an image just as described in saveAsBitmapFile.
ConnectivityDescriptor::Ptr m_gmrf_connectivity
Empty: default.
GLsizei const GLchar ** string
Definition: glext.h:4101
(see discussion in mrpt::maps::CRandomFieldGridMap2D)
void internal_loadFromConfigFile_common(const mrpt::config::CConfigFileBase &source, const std::string &section)
See utils::CLoadableOptions.
bool m_hasToRecoverMeanAndCov
Only for the KF2 implementation.
void setCellsConnectivity(const ConnectivityDescriptor::Ptr &new_connectivity_descriptor)
Sets a custom object to define the connectivity between cells.
double updated_std
[Dynamic maps only] The std cell value that was updated (to be used in the Forgetting_curve ...
double GMRF_saturate_min
(Default:-inf,+inf) Saturate the estimated mean in these limits
A class for storing an occupancy grid map.
This is the global namespace for all Mobile Robot Programming Toolkit (MRPT) libraries.
CRandomFieldGridMap2D represents a 2D grid map where each cell is associated one real-valued property...
Gaussian Markov Random Field, squared differences prior weights between 4 neighboring cells (see disc...
float KF_covSigma
The "sigma" for the initial covariance value between cells (in meters).
Declares a virtual base class for all metric maps storage classes.
Definition: CMetricMap.h:54
bool GMRF_skip_variance
(Default:false) Skip the computation of the variance, just compute the mean
A class used to store a 3D pose (a 3D translation + a rotation in 3D).
Definition: CPose3D.h:86
void updateMapEstimation()
Run the method-specific procedure required to ensure that the mean & variances are up-to-date with al...
virtual void saveMetricMapRepresentationToFile(const std::string &filNamePrefix) const override
The implementation in this class just calls all the corresponding method of the contained metric maps...
virtual void internal_clear() override
Erase all the contents of the map.
double dmv_var_mean
[Kernel DM-V only] The cumulative weighted variance of this cell
bool GMRF_use_occupancy_information
whether to use information of an occupancy_gridmap map for building the GMRF
std::string GMRF_simplemap_file
simplemap_file name of the occupancy_gridmap
uint16_t KF_W_size
[mrKalmanApproximate] The size of the window of neighbor cells.
GLsizei GLsizei GLchar * source
Definition: glext.h:4082
GLenum GLint GLint y
Definition: glext.h:3538
MRPT_FILL_ENUM_MEMBER(mrpt::maps::CRandomFieldGridMap2D::TMapRepresentation, mrKernelDM)
double computeConfidenceCellValue_DM_DMV(const TRandomFieldCell *cell) const
Computes the confidence of the cell concentration (alpha)
virtual void predictMeasurement(const double x, const double y, double &out_predict_response, double &out_predict_response_variance, bool do_sensor_normalization, const TGridInterpolationMethod interp_method=gimNearest)
Returns the prediction of the measurement at some (x,y) coordinates, and its certainty (in the form o...
mrpt::math::CMatrixD m_stackedCov
The compressed band diagonal matrix for the KF2 implementation.
virtual CRandomFieldGridMap2D::TInsertionOptionsCommon * getCommonInsertOptions()=0
Get the part of the options common to all CRandomFieldGridMap2D classes.
double evaluateResidual() const override
Return the residual/error of this observation.
double Lambda
"Information" of the observation (=inverse of the variance)
Simple, scalar (1-dim) constraint (edge) for a GMRF.
double dm_mean
[Kernel-methods only] The cumulative weighted readings of this cell
size_t GMRF_gridmap_image_cx
Pixel coordinates of the origin for the occupancy_gridmap.
std::deque< TPriorFactorGMRF > m_mrf_factors_priors
Vector with the precomputed priors for each GMRF model.
GLenum GLint x
Definition: glext.h:3538
double computeVarCellValue_DM_DMV(const TRandomFieldCell *cell) const
Computes the estimated variance of the cell concentration, or the overall average variance if it has ...
#define MRPT_ENUM_TYPE_BEGIN(_ENUM_TYPE_WITH_NS)
Definition: TEnumType.h:62
Lightweight 2D point.
void insertObservation_KF2(double normReading, const mrpt::math::TPoint2D &point)
The implementation of "insertObservation" for the Efficient Kalman Filter map model.
double GMRF_gridmap_image_res
occupancy_gridmap resolution: size of each pixel (m)
GLenum const GLfloat * params
Definition: glext.h:3534
float KF_initialCellStd
The initial standard deviation of each cell&#39;s concentration (will be stored both at each cell&#39;s struc...
size_t GMRF_gridmap_image_cy
Pixel coordinates of the origin for the occupancy_gridmap.
virtual void getAsMatrix(mrpt::math::CMatrixDouble &out_mat) const
Like saveAsBitmapFile(), but returns the data in matrix form (first row in the matrix is the upper (y...
double kf_std
[KF-methods only] The standard deviation value of this cell
double GMRF_lambdaObsLoss
The loss of information of the observations with each iteration.
A class for storing images as grayscale or RGB bitmaps.
Definition: img/CImage.h:130
void getAsMatlab3DGraphScript(std::string &out_script) const
Return a large text block with a MATLAB script to plot the contents of this map.
void insertIndividualReading(const double sensorReading, const mrpt::math::TPoint2D &point, const bool update_map=true, const bool time_invariant=true, const double reading_stddev=.0)
Direct update of the map with a reading in a given position of the map, using the appropriate method ...
float compute3DMatchingRatio(const mrpt::maps::CMetricMap *otherMap, const mrpt::poses::CPose3D &otherMapPose, const TMatchingRatioParams &params) const override
See docs in base class: in this class this always returns 0.
Sparse solver for GMRF (Gaussian Markov Random Fields) graphical models.



Page generated by Doxygen 1.8.14 for MRPT 1.9.9 Git: 7d5e6d718 Fri Aug 24 01:51:28 2018 +0200 at lun nov 2 08:35:50 CET 2020