MRPT  1.9.9
CPose3D.h
Go to the documentation of this file.
1 /* +------------------------------------------------------------------------+
2  | Mobile Robot Programming Toolkit (MRPT) |
3  | http://www.mrpt.org/ |
4  | |
5  | Copyright (c) 2005-2018, Individual contributors, see AUTHORS file |
6  | See: http://www.mrpt.org/Authors - All rights reserved. |
7  | Released under BSD License. See details in http://www.mrpt.org/License |
8  +------------------------------------------------------------------------+ */
9 #ifndef CPOSE3D_H
10 #define CPOSE3D_H
11 
12 #include <mrpt/poses/CPose.h>
14 #include <mrpt/math/CQuaternion.h>
16 
17 // Add for declaration of mexplus::from template specialization
19 
20 namespace mrpt::poses
21 {
22 class CPose3DQuat;
23 class CPose3DRotVec;
24 
25 /** A class used to store a 3D pose (a 3D translation + a rotation in 3D).
26  * The 6D transformation in SE(3) stored in this class is kept in two
27  * separate containers: a 3-array for the translation, and a 3x3 rotation
28  * matrix.
29  *
30  * This class allows parameterizing 6D poses as a 6-vector: [x y z yaw pitch
31  * roll] (read below
32  * for the angles convention). Note however,
33  * that the yaw/pitch/roll angles are only computed (on-demand and
34  * transparently)
35  * when the user requests them. Normally, rotations and transformations are
36  * always handled
37  * via the 3x3 rotation matrix.
38  *
39  * Yaw/Pitch/Roll angles are defined as successive rotations around *local*
40  * (dynamic) axes in the Z/Y/X order:
41  *
42  * <div align=center>
43  * <img src="CPose3D.gif">
44  * </div>
45  *
46  * It may be extremely confusing and annoying to find a different criterion also
47  * involving
48  * the names "yaw, pitch, roll" but regarding rotations around *global* (static)
49  * axes.
50  * Fortunately, it's very easy to see (by writing down the product of the three
51  * rotation matrices) that both conventions lead to exactly the same numbers.
52  * Only, that it's conventional to write the numbers in reverse order.
53  * That is, the same rotation can be described equivalently with any of these
54  * two
55  * parameterizations:
56  *
57  * - In local axes Z/Y/X convention: [yaw pitch roll] (This is the convention
58  * used in mrpt::poses::CPose3D)
59  * - In global axes X/Y/Z convention: [roll pitch yaw] (One of the Euler angles
60  * conventions)
61  *
62  * For further descriptions of point & pose classes, see
63  * mrpt::poses::CPoseOrPoint or refer
64  * to the [2D/3D Geometry tutorial](http://www.mrpt.org/2D_3D_Geometry) online.
65  *
66  * To change the individual components of the pose, use CPose3D::setFromValues.
67  * This class assures that the internal
68  * 3x3 rotation matrix is always up-to-date with the "yaw pitch roll" members.
69  *
70  * Rotations in 3D can be also represented by quaternions. See
71  * mrpt::math::CQuaternion, and method CPose3D::getAsQuaternion.
72  *
73  * This class and CPose3DQuat are very similar, and they can be converted to the
74  * each other automatically via transformation constructors.
75  *
76  * There are Lie algebra methods: \a exp and \a ln (see the methods for
77  * documentation).
78  *
79  * \note Read also: "A tutorial on SE(3) transformation parameterizations and
80  * on-manifold optimization", (Technical report), 2010-2014.
81  * [PDF](http://ingmec.ual.es/~jlblanco/papers/jlblanco2010geometry3D_techrep.pdf)
82  *
83  * \ingroup poses_grp
84  * \sa CPoseOrPoint,CPoint3D, mrpt::math::CQuaternion
85  */
86 class CPose3D : public CPose<CPose3D>, public mrpt::serialization::CSerializable
87 {
89 
90  // This must be added for declaration of MEX-related functions
92 
93  public:
94  /** The translation vector [x,y,z] access directly or with x(), y(), z()
95  * setter/getter methods. */
97 
98  protected:
99  /** The 3x3 rotation matrix, access with getRotationMatrix(),
100  * setRotationMatrix() (It's not safe to set this field as public) */
102 
103  /** Whether yaw/pitch/roll members are up-to-date since the last rotation
104  * matrix update. */
105  mutable bool m_ypr_uptodate;
106  /** These variables are updated every time that the object rotation matrix
107  * is modified (construction, loading from values, pose composition, etc )
108  */
109  mutable double m_yaw, m_pitch, m_roll;
110 
111  /** Rebuild the homog matrix from the angles. */
112  void rebuildRotationMatrix();
113 
114  /** Updates Yaw/pitch/roll members from the m_ROT */
115  inline void updateYawPitchRoll() const
116  {
117  if (!m_ypr_uptodate)
118  {
119  m_ypr_uptodate = true;
121  }
122  }
123 
124  public:
125  /** @name Constructors
126  @{ */
127 
128  /** Default constructor, with all the coordinates set to zero. */
129  CPose3D();
130 
131  /** Constructor with initilization of the pose; (remember that angles are
132  * always given in radians!) */
133  CPose3D(
134  const double x, const double y, const double z, const double yaw = 0,
135  const double pitch = 0, const double roll = 0);
136 
137  /** Constructor from a 4x4 homogeneous matrix - the passed matrix can be
138  * actually of any size larger than or equal 3x4, since only those first
139  * values are used (the last row of a homogeneous 4x4 matrix are always
140  * fixed). */
141  explicit CPose3D(const math::CMatrixDouble& m);
142 
143  /** Constructor from a 4x4 homogeneous matrix: */
144  explicit CPose3D(const math::CMatrixDouble44& m);
145 
146  /** Constructor from a 3x3 rotation matrix and a the translation given as a
147  * 3-vector, a 3-array, a CPoint3D or a mrpt::math::TPoint3D */
148  template <class MATRIX33, class VECTOR3>
149  inline CPose3D(const MATRIX33& rot, const VECTOR3& xyz)
151  {
152  ASSERT_EQUAL_(rot.rows(), 3);
153  ASSERT_EQUAL_(rot.cols(), 3);
154  ASSERT_EQUAL_(xyz.size(), 3);
155  for (int r = 0; r < 3; r++)
156  for (int c = 0; c < 3; c++) m_ROT(r, c) = rot(r, c);
157  for (int r = 0; r < 3; r++) m_coords[r] = xyz[r];
158  }
159  //! \overload
160  inline CPose3D(
161  const mrpt::math::CMatrixDouble33& rot,
162  const mrpt::math::CArrayDouble<3>& xyz)
163  : m_coords(xyz), m_ROT(rot), m_ypr_uptodate(false)
164  {
165  }
166 
167  /** Constructor from a CPose2D object.
168  */
169  explicit CPose3D(const CPose2D&);
170 
171  /** Constructor from a CPoint3D object.
172  */
173  explicit CPose3D(const CPoint3D&);
174 
175  /** Constructor from lightweight object.
176  */
177  explicit CPose3D(const mrpt::math::TPose3D&);
178 
180 
181  /** Constructor from a quaternion (which only represents the 3D rotation
182  * part) and a 3D displacement. */
183  CPose3D(
184  const mrpt::math::CQuaternionDouble& q, const double x, const double y,
185  const double z);
186 
187  /** Constructor from a CPose3DQuat. */
188  explicit CPose3D(const CPose3DQuat&);
189 
190  /** Constructor from a CPose3DRotVec. */
191  explicit CPose3D(const CPose3DRotVec& p);
192 
193  /** Fast constructor that leaves all the data uninitialized - call with
194  * UNINITIALIZED_POSE as argument */
197  {
198  }
199 
200  /** Constructor from an array with these 12 elements: [r11 r21 r31 r12 r22
201  * r32 r13 r23 r33 tx ty tz]
202  * where r{ij} are the entries of the 3x3 rotation matrix and t{x,y,z} are
203  * the 3D translation of the pose
204  * \sa setFrom12Vector, getAs12Vector
205  */
206  inline explicit CPose3D(const mrpt::math::CArrayDouble<12>& vec12)
208  {
209  setFrom12Vector(vec12);
210  }
211 
212  /** @} */ // end Constructors
213 
214  /** @name Access 3x3 rotation and 4x4 homogeneous matrices
215  @{ */
216 
217  /** Returns the corresponding 4x4 homogeneous transformation matrix for the
218  * point(translation) or pose (translation+orientation).
219  * \sa getInverseHomogeneousMatrix, getRotationMatrix
220  */
222  {
223  out_HM.insertMatrix(0, 0, m_ROT);
224  for (int i = 0; i < 3; i++) out_HM(i, 3) = m_coords[i];
225  out_HM(3, 0) = out_HM(3, 1) = out_HM(3, 2) = 0.;
226  out_HM(3, 3) = 1.;
227  }
228 
229  /** Get the 3x3 rotation matrix \sa getHomogeneousMatrix */
231  {
232  ROT = m_ROT;
233  }
234  //! \overload
236  {
237  return m_ROT;
238  }
239 
240  /** Sets the 3x3 rotation matrix \sa getRotationMatrix, getHomogeneousMatrix
241  */
243  {
244  m_ROT = ROT;
245  m_ypr_uptodate = false;
246  }
247 
248  /** @} */ // end rot and HM
249 
250  /** @name Pose-pose and pose-point compositions and operators
251  @{ */
252 
253  /** The operator \f$ a \oplus b \f$ is the pose compounding operator. */
254  inline CPose3D operator+(const CPose3D& b) const
255  {
257  ret.composeFrom(*this, b);
258  return ret;
259  }
260 
261  /** The operator \f$ a \oplus b \f$ is the pose compounding operator. */
262  CPoint3D operator+(const CPoint3D& b) const;
263 
264  /** The operator \f$ a \oplus b \f$ is the pose compounding operator. */
265  CPoint3D operator+(const CPoint2D& b) const;
266 
267  /** Computes the spherical coordinates of a 3D point as seen from the 6D
268  * pose specified by this object. For the coordinate system see the top of
269  * this page. */
271  const mrpt::math::TPoint3D& point, double& out_range, double& out_yaw,
272  double& out_pitch) const;
273 
274  /** An alternative, slightly more efficient way of doing \f$ G = P \oplus L
275  * \f$ with G and L being 3D points and P this 6D pose.
276  * If pointers are provided, the corresponding Jacobians are returned.
277  * "out_jacobian_df_dse3" stands for the Jacobian with respect to the 6D
278  * locally Euclidean vector in the tangent space of SE(3).
279  * See [this
280  * report](http://ingmec.ual.es/~jlblanco/papers/jlblanco2010geometry3D_techrep.pdf)
281  * for mathematical details.
282  * \param If set to true, the Jacobian "out_jacobian_df_dpose" uses a
283  * fastest linearized appoximation (valid only for small rotations!).
284  */
285  void composePoint(
286  double lx, double ly, double lz, double& gx, double& gy, double& gz,
287  mrpt::math::CMatrixFixedNumeric<double, 3, 3>* out_jacobian_df_dpoint =
288  nullptr,
289  mrpt::math::CMatrixFixedNumeric<double, 3, 6>* out_jacobian_df_dpose =
290  nullptr,
291  mrpt::math::CMatrixFixedNumeric<double, 3, 6>* out_jacobian_df_dse3 =
292  nullptr,
293  bool use_small_rot_approx = false) const;
294 
295  /** An alternative, slightly more efficient way of doing \f$ G = P \oplus L
296  * \f$ with G and L being 3D points and P this 6D pose.
297  * \note local_point is passed by value to allow global and local point to
298  * be the same variable
299  */
300  inline void composePoint(
301  const mrpt::math::TPoint3D& local_point,
302  mrpt::math::TPoint3D& global_point) const
303  {
304  composePoint(
305  local_point.x, local_point.y, local_point.z, global_point.x,
306  global_point.y, global_point.z);
307  }
308  /** This version of the method assumes that the resulting point has no Z
309  * component (use with caution!) */
310  inline void composePoint(
311  const mrpt::math::TPoint3D& local_point,
312  mrpt::math::TPoint2D& global_point) const
313  {
314  double dummy_z;
315  composePoint(
316  local_point.x, local_point.y, local_point.z, global_point.x,
317  global_point.y, dummy_z);
318  }
319 
320  /** An alternative, slightly more efficient way of doing \f$ G = P \oplus L
321  * \f$ with G and L being 3D points and P this 6D pose. */
322  inline void composePoint(
323  double lx, double ly, double lz, float& gx, float& gy, float& gz) const
324  {
325  double ggx, ggy, ggz;
326  composePoint(lx, ly, lz, ggx, ggy, ggz);
327  gx = static_cast<float>(ggx);
328  gy = static_cast<float>(ggy);
329  gz = static_cast<float>(ggz);
330  }
331 
332  /** Computes the 3D point L such as \f$ L = G \ominus this \f$.
333  * If pointers are provided, the corresponding Jacobians are returned.
334  * "out_jacobian_df_dse3" stands for the Jacobian with respect to the 6D
335  * locally Euclidean vector in the tangent space of SE(3).
336  * See [this
337  * report](http://ingmec.ual.es/~jlblanco/papers/jlblanco2010geometry3D_techrep.pdf)
338  * for mathematical details.
339  * \sa composePoint, composeFrom
340  */
341  void inverseComposePoint(
342  const double gx, const double gy, const double gz, double& lx,
343  double& ly, double& lz,
344  mrpt::math::CMatrixFixedNumeric<double, 3, 3>* out_jacobian_df_dpoint =
345  nullptr,
346  mrpt::math::CMatrixFixedNumeric<double, 3, 6>* out_jacobian_df_dpose =
347  nullptr,
348  mrpt::math::CMatrixFixedNumeric<double, 3, 6>* out_jacobian_df_dse3 =
349  nullptr) const;
350 
351  /** \overload */
352  inline void inverseComposePoint(
354  {
355  inverseComposePoint(g.x, g.y, g.z, l.x, l.y, l.z);
356  }
357 
358  /** overload for 2D points \exception If the z component of the result is
359  * greater than some epsilon */
360  inline void inverseComposePoint(
362  const double eps = 1e-6) const
363  {
364  double lz;
365  inverseComposePoint(g.x, g.y, 0, l.x, l.y, lz);
366  ASSERT_BELOW_(std::abs(lz), eps);
367  }
368 
369  /** Makes "this = A (+) B"; this method is slightly more efficient than
370  * "this= A + B;" since it avoids the temporary object.
371  * \note A or B can be "this" without problems.
372  */
373  void composeFrom(const CPose3D& A, const CPose3D& B);
374 
375  /** Make \f$ this = this \oplus b \f$ (\a b can be "this" without problems)
376  */
377  inline CPose3D& operator+=(const CPose3D& b)
378  {
379  composeFrom(*this, b);
380  return *this;
381  }
382 
383  /** Makes \f$ this = A \ominus B \f$ this method is slightly more efficient
384  * than "this= A - B;" since it avoids the temporary object.
385  * \note A or B can be "this" without problems.
386  * \sa composeFrom, composePoint
387  */
388  void inverseComposeFrom(const CPose3D& A, const CPose3D& B);
389 
390  /** Compute \f$ RET = this \oplus b \f$ */
391  inline CPose3D operator-(const CPose3D& b) const
392  {
394  ret.inverseComposeFrom(*this, b);
395  return ret;
396  }
397 
398  /** Convert this pose into its inverse, saving the result in itself. \sa
399  * operator- */
400  void inverse();
401 
402  /** makes: this = p (+) this */
404  {
405  composeFrom(p, CPose3D(*this));
406  }
407 
408  /** @} */ // compositions
409 
410  /** Return the opposite of the current pose instance by taking the negative
411  * of all its components \a individually
412  */
413  CPose3D getOppositeScalar() const;
414 
415  /** @name Access and modify contents
416  @{ */
417 
418  /** Scalar sum of all 6 components: This is diferent from poses composition,
419  * which is implemented as "+" operators.
420  * \sa normalizeAngles
421  */
422  void addComponents(const CPose3D& p);
423 
424  /** Rebuild the internal matrix & update the yaw/pitch/roll angles within
425  * the ]-PI,PI] range (Must be called after using addComponents)
426  * \sa addComponents
427  */
428  void normalizeAngles();
429 
430  /** Scalar multiplication of x,y,z,yaw,pitch & roll (angles will be wrapped
431  * to the ]-pi,pi] interval). */
432  void operator*=(const double s);
433 
434  /** Set the pose from a 3D position (meters) and yaw/pitch/roll angles
435  * (radians) - This method recomputes the internal rotation matrix.
436  * \sa getYawPitchRoll, setYawPitchRoll
437  */
438  void setFromValues(
439  const double x0, const double y0, const double z0, const double yaw = 0,
440  const double pitch = 0, const double roll = 0);
441 
442  /** Set the pose from a 3D position (meters) and a quaternion, stored as [x
443  * y z qr qx qy qz] in a 7-element vector.
444  * \sa setFromValues, getYawPitchRoll, setYawPitchRoll, CQuaternion,
445  * getAsQuaternion
446  */
447  template <typename VECTORLIKE>
448  inline void setFromXYZQ(const VECTORLIKE& v, const size_t index_offset = 0)
449  {
450  ASSERT_ABOVEEQ_(v.size(), 7 + index_offset);
451  // The 3x3 rotation part:
453  v[index_offset + 3], v[index_offset + 4], v[index_offset + 5],
454  v[index_offset + 6]);
455  q.rotationMatrixNoResize(m_ROT);
456  m_ypr_uptodate = false;
457  m_coords[0] = v[index_offset + 0];
458  m_coords[1] = v[index_offset + 1];
459  m_coords[2] = v[index_offset + 2];
460  }
461 
462  /** Set the 3 angles of the 3D pose (in radians) - This method recomputes
463  * the internal rotation coordinates matrix.
464  * \sa getYawPitchRoll, setFromValues
465  */
466  inline void setYawPitchRoll(
467  const double yaw_, const double pitch_, const double roll_)
468  {
469  setFromValues(x(), y(), z(), yaw_, pitch_, roll_);
470  }
471 
472  /** Set pose from an array with these 12 elements: [r11 r21 r31 r12 r22 r32
473  * r13 r23 r33 tx ty tz]
474  * where r{ij} are the entries of the 3x3 rotation matrix and t{x,y,z} are
475  * the 3D translation of the pose
476  * \sa getAs12Vector
477  */
478  template <class ARRAYORVECTOR>
479  inline void setFrom12Vector(const ARRAYORVECTOR& vec12)
480  {
481  m_ROT.set_unsafe(0, 0, vec12[0]);
482  m_ROT.set_unsafe(0, 1, vec12[3]);
483  m_ROT.set_unsafe(0, 2, vec12[6]);
484  m_ROT.set_unsafe(1, 0, vec12[1]);
485  m_ROT.set_unsafe(1, 1, vec12[4]);
486  m_ROT.set_unsafe(1, 2, vec12[7]);
487  m_ROT.set_unsafe(2, 0, vec12[2]);
488  m_ROT.set_unsafe(2, 1, vec12[5]);
489  m_ROT.set_unsafe(2, 2, vec12[8]);
490  m_ypr_uptodate = false;
491  m_coords[0] = vec12[9];
492  m_coords[1] = vec12[10];
493  m_coords[2] = vec12[11];
494  }
495 
496  /** Get the pose representation as an array with these 12 elements: [r11 r21
497  * r31 r12 r22 r32 r13 r23 r33 tx ty tz]
498  * where r{ij} are the entries of the 3x3 rotation matrix and t{x,y,z} are
499  * the 3D translation of the pose
500  * \sa setFrom12Vector
501  */
502  template <class ARRAYORVECTOR>
503  inline void getAs12Vector(ARRAYORVECTOR& vec12) const
504  {
505  vec12[0] = m_ROT.get_unsafe(0, 0);
506  vec12[3] = m_ROT.get_unsafe(0, 1);
507  vec12[6] = m_ROT.get_unsafe(0, 2);
508  vec12[1] = m_ROT.get_unsafe(1, 0);
509  vec12[4] = m_ROT.get_unsafe(1, 1);
510  vec12[7] = m_ROT.get_unsafe(1, 2);
511  vec12[2] = m_ROT.get_unsafe(2, 0);
512  vec12[5] = m_ROT.get_unsafe(2, 1);
513  vec12[8] = m_ROT.get_unsafe(2, 2);
514  vec12[9] = m_coords[0];
515  vec12[10] = m_coords[1];
516  vec12[11] = m_coords[2];
517  }
518 
519  /** Returns the three angles (yaw, pitch, roll), in radians, from the
520  * rotation matrix.
521  * \sa setFromValues, yaw, pitch, roll
522  */
523  void getYawPitchRoll(double& yaw, double& pitch, double& roll) const;
524 
525  /** Get the YAW angle (in radians) \sa setFromValues */
526  inline double yaw() const
527  {
529  return m_yaw;
530  }
531  /** Get the PITCH angle (in radians) \sa setFromValues */
532  inline double pitch() const
533  {
535  return m_pitch;
536  }
537  /** Get the ROLL angle (in radians) \sa setFromValues */
538  inline double roll() const
539  {
541  return m_roll;
542  }
543 
544  /** Returns a 1x6 vector with [x y z yaw pitch roll] */
546  /// \overload
548 
549  /** Returns the quaternion associated to the rotation of this object (NOTE:
550  * XYZ translation is ignored)
551  * \f[ \mathbf{q} = \left( \begin{array}{c} \cos (\phi /2) \cos (\theta /2)
552  * \cos (\psi /2) + \sin (\phi /2) \sin (\theta /2) \sin (\psi /2) \\ \sin
553  * (\phi /2) \cos (\theta /2) \cos (\psi /2) - \cos (\phi /2) \sin (\theta
554  * /2) \sin (\psi /2) \\ \cos (\phi /2) \sin (\theta /2) \cos (\psi /2) +
555  * \sin (\phi /2) \cos (\theta /2) \sin (\psi /2) \\ \cos (\phi /2) \cos
556  * (\theta /2) \sin (\psi /2) - \sin (\phi /2) \sin (\theta /2) \cos (\psi
557  * /2) \\ \end{array}\right) \f]
558  * With : \f$ \phi = roll \f$, \f$ \theta = pitch \f$ and \f$ \psi = yaw
559  * \f$.
560  * \param out_dq_dr If provided, the 4x3 Jacobian of the transformation
561  * will be computed and stored here. It's the Jacobian of the transformation
562  * from (yaw pitch roll) to (qr qx qy qz).
563  */
564  void getAsQuaternion(
567  nullptr) const;
568 
569  inline const double& operator[](unsigned int i) const
570  {
572  switch (i)
573  {
574  case 0:
575  return m_coords[0];
576  case 1:
577  return m_coords[1];
578  case 2:
579  return m_coords[2];
580  case 3:
581  return m_yaw;
582  case 4:
583  return m_pitch;
584  case 5:
585  return m_roll;
586  default:
587  throw std::runtime_error(
588  "CPose3D::operator[]: Index of bounds.");
589  }
590  }
591  // CPose3D CANNOT have a write [] operator, since it'd leave the object in
592  // an inconsistent state (outdated rotation matrix).
593  // Use setFromValues() instead.
594  // inline double &operator[](unsigned int i)
595 
596  /** Returns a human-readable textual representation of the object (eg: "[x y
597  * z yaw pitch roll]", angles in degrees.)
598  * \sa fromString
599  */
600  void asString(std::string& s) const
601  {
602  using mrpt::RAD2DEG;
604  s = mrpt::format(
605  "[%f %f %f %f %f %f]", m_coords[0], m_coords[1], m_coords[2],
607  }
608  inline std::string asString() const
609  {
610  std::string s;
611  asString(s);
612  return s;
613  }
614 
615  /** Set the current object value from a string generated by 'asString' (eg:
616  * "[x y z yaw pitch roll]", angles in deg. )
617  * \sa asString
618  * \exception std::exception On invalid format
619  */
620  void fromString(const std::string& s)
621  {
622  using mrpt::DEG2RAD;
624  if (!m.fromMatlabStringFormat(s))
625  THROW_EXCEPTION("Malformed expression in ::fromString");
626  ASSERTMSG_(m.rows() == 1 && m.cols() == 6, "Expected vector length=6");
627  this->setFromValues(
628  m.get_unsafe(0, 0), m.get_unsafe(0, 1), m.get_unsafe(0, 2),
629  DEG2RAD(m.get_unsafe(0, 3)), DEG2RAD(m.get_unsafe(0, 4)),
630  DEG2RAD(m.get_unsafe(0, 5)));
631  }
632  /** Same as fromString, but without requiring the square brackets in the
633  * string */
635  {
636  this->fromString("[" + s + "]");
637  }
638 
639  /** Return true if the 6D pose represents a Z axis almost exactly vertical
640  * (upwards or downwards), with a given tolerance (if set to 0 exact
641  * horizontality is tested). */
642  bool isHorizontal(const double tolerance = 0) const;
643 
644  /** The euclidean distance between two poses taken as two 6-length vectors
645  * (angles in radians). */
646  double distanceEuclidean6D(const CPose3D& o) const;
647 
648  /** @} */ // modif. components
649 
650  /** @name Lie Algebra methods
651  @{ */
652 
653  /** Exponentiate a Vector in the SE(3) Lie Algebra to generate a new CPose3D
654  * (static method).
655  * \param pseudo_exponential If set to true, XYZ are copied from the first
656  * three elements in the vector instead of using the proper Lie Algebra
657  * formulas (this is actually the common practice in robotics literature).
658  */
659  static CPose3D exp(
661  bool pseudo_exponential = false);
662 
663  /** \overload */
664  static void exp(
665  const mrpt::math::CArrayNumeric<double, 6>& vect, CPose3D& out_pose,
666  bool pseudo_exponential = false);
667 
668  /** Exponentiate a vector in the Lie algebra to generate a new SO(3) (a 3x3
669  * rotation matrix). */
672 
673  /** Take the logarithm of the 3x4 matrix defined by this pose, generating
674  * the corresponding vector in the SE(3) Lie Algebra.
675  * \sa ln_jacob
676  */
677  void ln(mrpt::math::CArrayDouble<6>& out_ln) const;
678 
679  /// \overload
681  {
683  ln(ret);
684  return ret;
685  }
686 
687  /** Jacobian of the logarithm of the 3x4 matrix defined by this pose.
688  * \sa ln
689  */
691 
692  /** Static function to compute the Jacobian of the SO(3) Logarithm function,
693  * evaluated at a given 3x3 rotation matrix R.
694  * \sa ln, ln_jacob
695  */
696  static void ln_rot_jacob(
699 
700  /** Take the logarithm of the 3x3 rotation matrix, generating the
701  * corresponding vector in the Lie Algebra */
703 
704  /** The Jacobian d (e^eps * D) / d eps , with eps=increment in Lie Algebra.
705  * \note Eq. 10.3.5 in tech report
706  * http://ingmec.ual.es/~jlblanco/papers/jlblanco2010geometry3D_techrep.pdf
707  */
708  static void jacob_dexpeD_de(
709  const CPose3D& D, Eigen::Matrix<double, 12, 6>& jacob);
710 
711  /** The Jacobian d (A * e^eps * D) / d eps , with eps=increment in Lie
712  * Algebra.
713  * \note Eq. 10.3.7 in tech report
714  * http://ingmec.ual.es/~jlblanco/papers/jlblanco2010geometry3D_techrep.pdf
715  */
716  static void jacob_dAexpeD_de(
717  const CPose3D& A, const CPose3D& D,
718  Eigen::Matrix<double, 12, 6>& jacob);
719 
720  /** @} */
721 
722  void setToNaN() override;
723 
724  /** Used to emulate CPosePDF types, for example, in
725  * mrpt::graphs::CNetworkOfPoses */
727  enum
728  {
730  };
731  static constexpr bool is_3D() { return is_3D_val != 0; }
732  enum
733  {
735  };
736  enum
737  {
739  };
740  static constexpr bool is_PDF() { return is_PDF_val != 0; }
741  inline const type_value& getPoseMean() const { return *this; }
742  inline type_value& getPoseMean() { return *this; }
743  /** @name STL-like methods and typedefs
744  @{ */
745  /** The type of the elements */
746  using value_type = double;
747  using reference = double&;
748  using const_reference = const double&;
749  using size_type = std::size_t;
751 
752  // size is constant
753  enum
754  {
756  };
757  static constexpr size_type size() { return static_size; }
758  static constexpr bool empty() { return false; }
759  static constexpr size_type max_size() { return static_size; }
760  static inline void resize(const size_t n)
761  {
762  if (n != static_size)
763  throw std::logic_error(format(
764  "Try to change the size of CPose3D to %u.",
765  static_cast<unsigned>(n)));
766  }
767  /** @} */
768 
769 }; // End of class def.
770 
771 std::ostream& operator<<(std::ostream& o, const CPose3D& p);
772 
773 /** Unary - operator: return the inverse pose "-p" (Note that is NOT the same
774  * than a pose with negative x y z yaw pitch roll) */
775 CPose3D operator-(const CPose3D& p);
776 
777 bool operator==(const CPose3D& p1, const CPose3D& p2);
778 bool operator!=(const CPose3D& p1, const CPose3D& p2);
779 
780 } // namespace mrpt::poses
781 #endif
mrpt::math::TPose3D asTPose() const
Definition: CPose3D.cpp:1043
double x() const
Common members of all points & poses classes.
Definition: CPoseOrPoint.h:140
static constexpr bool is_PDF()
Definition: CPose3D.h:740
void inverseComposeFrom(const CPose3D &A, const CPose3D &B)
Makes this method is slightly more efficient than "this= A - B;" since it avoids the temporary objec...
Definition: CPose3D.cpp:621
CPose3D getOppositeScalar() const
Return the opposite of the current pose instance by taking the negative of all its components individ...
Definition: CPose3D.cpp:339
CPose3D & operator+=(const CPose3D &b)
Make (b can be "this" without problems)
Definition: CPose3D.h:377
GLdouble GLdouble z
Definition: glext.h:3872
static mrpt::math::CMatrixDouble33 exp_rotation(const mrpt::math::CArrayNumeric< double, 3 > &vect)
Exponentiate a vector in the Lie algebra to generate a new SO(3) (a 3x3 rotation matrix).
Definition: CPose3D.cpp:794
double RAD2DEG(const double x)
Radians to degrees.
double x
X,Y coordinates.
const type_value & getPoseMean() const
Definition: CPose3D.h:741
#define THROW_EXCEPTION(msg)
Definition: exceptions.h:41
void setFromXYZQ(const VECTORLIKE &v, const size_t index_offset=0)
Set the pose from a 3D position (meters) and a quaternion, stored as [x y z qr qx qy qz] in a 7-eleme...
Definition: CPose3D.h:448
mrpt::math::CMatrixDouble33 m_ROT
The 3x3 rotation matrix, access with getRotationMatrix(), setRotationMatrix() (It&#39;s not safe to set t...
Definition: CPose3D.h:101
#define ASSERT_BELOW_(__A, __B)
Definition: exceptions.h:165
void setToNaN() override
Set all data fields to quiet NaN.
Definition: CPose3D.cpp:1033
bool isHorizontal(const double tolerance=0) const
Return true if the 6D pose represents a Z axis almost exactly vertical (upwards or downwards)...
Definition: CPose3D.cpp:608
bool m_ypr_uptodate
Whether yaw/pitch/roll members are up-to-date since the last rotation matrix update.
Definition: CPose3D.h:105
static constexpr bool is_3D()
Definition: CPose3D.h:731
double DEG2RAD(const double x)
Degrees to radians.
#define DECLARE_MEXPLUS_FROM(complete_type)
This must be inserted if a custom conversion method for MEX API is implemented in the class...
GLdouble GLdouble GLdouble GLdouble q
Definition: glext.h:3721
static constexpr size_type size()
Definition: CPose3D.h:757
mrpt::math::CArrayDouble< 3 > ln_rotation() const
Take the logarithm of the 3x3 rotation matrix, generating the corresponding vector in the Lie Algebra...
Definition: CPose3D.cpp:785
GLenum GLsizei n
Definition: glext.h:5074
void setYawPitchRoll(const double yaw_, const double pitch_, const double roll_)
Set the 3 angles of the 3D pose (in radians) - This method recomputes the internal rotation coordinat...
Definition: CPose3D.h:466
CArrayNumeric is an array for numeric types supporting several mathematical operations (actually...
Definition: CArrayNumeric.h:25
Column vector, like Eigen::MatrixX*, but automatically initialized to zeros since construction...
Definition: eigen_frwds.h:44
double pitch() const
Get the PITCH angle (in radians)
Definition: CPose3D.h:532
double yaw() const
Get the YAW angle (in radians)
Definition: CPose3D.h:526
CPose3D operator+(const CPose3D &b) const
The operator is the pose compounding operator.
Definition: CPose3D.h:254
void rebuildRotationMatrix()
Rebuild the homog matrix from the angles.
Definition: CPose3D.cpp:258
void getAsQuaternion(mrpt::math::CQuaternionDouble &q, mrpt::math::CMatrixFixedNumeric< double, 4, 3 > *out_dq_dr=nullptr) const
Returns the quaternion associated to the rotation of this object (NOTE: XYZ translation is ignored) ...
Definition: CPose3D.cpp:510
CPose3D(TConstructorFlags_Poses)
Fast constructor that leaves all the data uninitialized - call with UNINITIALIZED_POSE as argument...
Definition: CPose3D.h:195
GLdouble s
Definition: glext.h:3676
void updateYawPitchRoll() const
Updates Yaw/pitch/roll members from the m_ROT.
Definition: CPose3D.h:115
void inverse()
Convert this pose into its inverse, saving the result in itself.
Definition: CPose3D.cpp:593
void setRotationMatrix(const mrpt::math::CMatrixDouble33 &ROT)
Sets the 3x3 rotation matrix.
Definition: CPose3D.h:242
double distanceEuclidean6D(const CPose3D &o) const
The euclidean distance between two poses taken as two 6-length vectors (angles in radians)...
Definition: CPose3D.cpp:363
CPose3D(const mrpt::math::CMatrixDouble33 &rot, const mrpt::math::CArrayDouble< 3 > &xyz)
Definition: CPose3D.h:160
static void jacob_dexpeD_de(const CPose3D &D, Eigen::Matrix< double, 12, 6 > &jacob)
The Jacobian d (e^eps * D) / d eps , with eps=increment in Lie Algebra.
Definition: CPose3D.cpp:997
static constexpr size_type max_size()
Definition: CPose3D.h:759
CPose3D(const mrpt::math::CArrayDouble< 12 > &vec12)
Constructor from an array with these 12 elements: [r11 r21 r31 r12 r22 r32 r13 r23 r33 tx ty tz] wher...
Definition: CPose3D.h:206
void fromString(const std::string &s)
Set the current object value from a string generated by &#39;asString&#39; (eg: "[x y z yaw pitch roll]"...
Definition: CPose3D.h:620
type_value & getPoseMean()
Definition: CPose3D.h:742
static constexpr bool empty()
Definition: CPose3D.h:758
mrpt::math::CArrayDouble< 3 > m_coords
The translation vector [x,y,z] access directly or with x(), y(), z() setter/getter methods...
Definition: CPose3D.h:96
void composeFrom(const CPose3D &A, const CPose3D &B)
Makes "this = A (+) B"; this method is slightly more efficient than "this= A + B;" since it avoids th...
Definition: CPose3D.cpp:565
#define ASSERT_EQUAL_(__A, __B)
Assert comparing two values, reporting their actual values upon failure.
Definition: exceptions.h:153
const double & const_reference
Definition: CPose3D.h:748
const GLubyte * c
Definition: glext.h:6313
#define DECLARE_MEX_CONVERSION
This must be inserted if a custom conversion method for MEX API is implemented in the class...
bool operator!=(const CPoint< DERIVEDCLASS > &p1, const CPoint< DERIVEDCLASS > &p2)
Definition: CPoint.h:172
std::size_t size_type
Definition: CPose3D.h:749
CPose2D operator-(const CPose2D &p)
Unary - operator: return the inverse pose "-p" (Note that is NOT the same than a pose with negative x...
Definition: CPose2D.cpp:315
void addComponents(const CPose3D &p)
Scalar sum of all 6 components: This is diferent from poses composition, which is implemented as "+" ...
Definition: CPose3D.cpp:348
void sphericalCoordinates(const mrpt::math::TPoint3D &point, double &out_range, double &out_yaw, double &out_pitch) const
Computes the spherical coordinates of a 3D point as seen from the 6D pose specified by this object...
Definition: CPose3D.cpp:314
static void resize(const size_t n)
Definition: CPose3D.h:760
void changeCoordinatesReference(const CPose3D &p)
makes: this = p (+) this
Definition: CPose3D.h:403
GLubyte g
Definition: glext.h:6279
A base class for representing a pose in 2D or 3D.
Definition: CPose.h:25
GLubyte GLubyte b
Definition: glext.h:6279
const double eps
void composePoint(const mrpt::math::TPoint3D &local_point, mrpt::math::TPoint3D &global_point) const
An alternative, slightly more efficient way of doing with G and L being 3D points and P this 6D pose...
Definition: CPose3D.h:300
double x
X,Y,Z coordinates.
#define ASSERTMSG_(f, __ERROR_MSG)
Defines an assertion mechanism.
Definition: exceptions.h:101
void inverseComposePoint(const mrpt::math::TPoint3D &g, mrpt::math::TPoint3D &l) const
Definition: CPose3D.h:352
A class used to store a 3D pose as a translation (x,y,z) and a quaternion (qr,qx,qy,qz).
Definition: CPose3DQuat.h:46
#define ASSERT_ABOVEEQ_(__A, __B)
Definition: exceptions.h:183
GLsizei const GLchar ** string
Definition: glext.h:4101
double m_yaw
These variables are updated every time that the object rotation matrix is modified (construction...
Definition: CPose3D.h:109
A class used to store a 2D point.
Definition: CPoint2D.h:33
A class used to store a 3D point.
Definition: CPoint3D.h:31
Classes for 2D/3D geometry representation, both of single values and probability density distribution...
double roll() const
Get the ROLL angle (in radians)
Definition: CPose3D.h:538
_W64 int ptrdiff_t
Definition: glew.h:137
void setFrom12Vector(const ARRAYORVECTOR &vec12)
Set pose from an array with these 12 elements: [r11 r21 r31 r12 r22 r32 r13 r23 r33 tx ty tz] where r...
Definition: CPose3D.h:479
void composePoint(double lx, double ly, double lz, float &gx, float &gy, float &gz) const
An alternative, slightly more efficient way of doing with G and L being 3D points and P this 6D pose...
Definition: CPose3D.h:322
void asString(std::string &s) const
Returns a human-readable textual representation of the object (eg: "[x y z yaw pitch roll]"...
Definition: CPose3D.h:600
void operator*=(const double s)
Scalar multiplication of x,y,z,yaw,pitch & roll (angles will be wrapped to the ]-pi,pi] interval).
Definition: CPose3D.cpp:291
void getYawPitchRoll(double &yaw, double &pitch, double &roll) const
Returns the three angles (yaw, pitch, roll), in radians, from the rotation matrix.
Definition: CPose3D.cpp:306
void ln_jacob(mrpt::math::CMatrixFixedNumeric< double, 6, 12 > &J) const
Jacobian of the logarithm of the 3x4 matrix defined by this pose.
Definition: CPose3D.cpp:905
const GLdouble * v
Definition: glext.h:3678
void inverseComposePoint(const mrpt::math::TPoint2D &g, mrpt::math::TPoint2D &l, const double eps=1e-6) const
overload for 2D points
Definition: CPose3D.h:360
This is the global namespace for all Mobile Robot Programming Toolkit (MRPT) libraries.
#define DEFINE_SERIALIZABLE(class_name)
This declaration must be inserted in all CSerializable classes definition, within the class declarati...
GLdouble GLdouble GLdouble r
Definition: glext.h:3705
bool operator==(const CPoint< DERIVEDCLASS > &p1, const CPoint< DERIVEDCLASS > &p2)
Definition: CPoint.h:164
double value_type
The type of the elements.
Definition: CPose3D.h:746
A class used to store a 2D pose, including the 2D coordinate point and a heading (phi) angle...
Definition: CPose2D.h:38
const float R
A class used to store a 3D pose (a 3D translation + a rotation in 3D).
Definition: CPose3D.h:86
static void ln_rot_jacob(const mrpt::math::CMatrixDouble33 &R, mrpt::math::CMatrixFixedNumeric< double, 3, 9 > &M)
Static function to compute the Jacobian of the SO(3) Logarithm function, evaluated at a given 3x3 rot...
Definition: CPose3D.cpp:972
std::string format(const char *fmt,...) MRPT_printf_format_check(1
A std::string version of C sprintf.
Definition: format.cpp:16
void composePoint(double lx, double ly, double lz, double &gx, double &gy, double &gz, mrpt::math::CMatrixFixedNumeric< double, 3, 3 > *out_jacobian_df_dpoint=nullptr, mrpt::math::CMatrixFixedNumeric< double, 3, 6 > *out_jacobian_df_dpose=nullptr, mrpt::math::CMatrixFixedNumeric< double, 3, 6 > *out_jacobian_df_dse3=nullptr, bool use_small_rot_approx=false) const
An alternative, slightly more efficient way of doing with G and L being 3D points and P this 6D pose...
Definition: CPose3D.cpp:379
CPose3D()
Default constructor, with all the coordinates set to zero.
Definition: CPose3D.cpp:54
void setFromValues(const double x0, const double y0, const double z0, const double yaw=0, const double pitch=0, const double roll=0)
Set the pose from a 3D position (meters) and yaw/pitch/roll angles (radians) - This method recomputes...
Definition: CPose3D.cpp:239
Lightweight 3D pose (three spatial coordinates, plus three angular coordinates).
CPose3D(const MATRIX33 &rot, const VECTOR3 &xyz)
Constructor from a 3x3 rotation matrix and a the translation given as a 3-vector, a 3-array...
Definition: CPose3D.h:149
The virtual base class which provides a unified interface for all persistent objects in MRPT...
Definition: CSerializable.h:30
GLenum GLint GLint y
Definition: glext.h:3538
void normalizeAngles()
Rebuild the internal matrix & update the yaw/pitch/roll angles within the ]-PI,PI] range (Must be cal...
Definition: CPose3D.cpp:235
const mrpt::math::CMatrixDouble33 & getRotationMatrix() const
Definition: CPose3D.h:235
void fromStringRaw(const std::string &s)
Same as fromString, but without requiring the square brackets in the string.
Definition: CPose3D.h:634
mrpt::math::CArrayDouble< 6 > ln() const
Definition: CPose3D.h:680
A 3D pose, with a 3D translation and a rotation in 3D parameterized in rotation-vector form (equivale...
Definition: CPose3DRotVec.h:42
GLenum GLint x
Definition: glext.h:3538
A quaternion, which can represent a 3D rotation as pair , with a real part "r" and a 3D vector ...
Definition: CQuaternion.h:44
void getRotationMatrix(mrpt::math::CMatrixDouble33 &ROT) const
Get the 3x3 rotation matrix.
Definition: CPose3D.h:230
Lightweight 3D point.
void getAsVector(mrpt::math::CVectorDouble &v) const
Returns a 1x6 vector with [x y z yaw pitch roll].
Definition: CPose3D.cpp:477
Lightweight 2D point.
void getAs12Vector(ARRAYORVECTOR &vec12) const
Get the pose representation as an array with these 12 elements: [r11 r21 r31 r12 r22 r32 r13 r23 r33 ...
Definition: CPose3D.h:503
static CPose3D exp(const mrpt::math::CArrayNumeric< double, 6 > &vect, bool pseudo_exponential=false)
Exponentiate a Vector in the SE(3) Lie Algebra to generate a new CPose3D (static method).
Definition: CPose3D.cpp:758
GLfloat GLfloat p
Definition: glext.h:6305
CPose3D operator-(const CPose3D &b) const
Compute .
Definition: CPose3D.h:391
void getHomogeneousMatrix(mrpt::math::CMatrixDouble44 &out_HM) const
Returns the corresponding 4x4 homogeneous transformation matrix for the point(translation) or pose (t...
Definition: CPose3D.h:221
void composePoint(const mrpt::math::TPoint3D &local_point, mrpt::math::TPoint2D &global_point) const
This version of the method assumes that the resulting point has no Z component (use with caution!) ...
Definition: CPose3D.h:310
static void jacob_dAexpeD_de(const CPose3D &A, const CPose3D &D, Eigen::Matrix< double, 12, 6 > &jacob)
The Jacobian d (A * e^eps * D) / d eps , with eps=increment in Lie Algebra.
Definition: CPose3D.cpp:1017
double & reference
Definition: CPose3D.h:747
std::string asString() const
Definition: CPose3D.h:608
void inverseComposePoint(const double gx, const double gy, const double gz, double &lx, double &ly, double &lz, mrpt::math::CMatrixFixedNumeric< double, 3, 3 > *out_jacobian_df_dpoint=nullptr, mrpt::math::CMatrixFixedNumeric< double, 3, 6 > *out_jacobian_df_dpose=nullptr, mrpt::math::CMatrixFixedNumeric< double, 3, 6 > *out_jacobian_df_dse3=nullptr) const
Computes the 3D point L such as .
Definition: CPose3D.cpp:649
std::ptrdiff_t difference_type
Definition: CPose3D.h:750
const double & operator[](unsigned int i) const
Definition: CPose3D.h:569
std::ostream & operator<<(std::ostream &o, const CPoint< DERIVEDCLASS > &p)
Dumps a point as a string [x,y] or [x,y,z].
Definition: CPoint.h:138



Page generated by Doxygen 1.8.14 for MRPT 1.9.9 Git: 7d5e6d718 Fri Aug 24 01:51:28 2018 +0200 at lun nov 2 08:35:50 CET 2020