9 #ifndef CASTARALGORITHM_H 10 #define CASTARALGORITHM_H 73 virtual double getCost(
const T& sol) = 0;
93 const T& initialSol, T& finalSol,
double upperLevel = HUGE_VAL,
94 double maxComputationTime = HUGE_VAL)
101 std::multimap<double, T> partialSols;
103 std::pair<double, T>(
getTotalCost(initialSol), initialSol));
106 double currentOptimal = upperLevel;
108 std::vector<T> children;
111 while (!partialSols.empty())
114 if (time.
Tac() >= maxComputationTime)
return found ? 2 : 0;
117 double tempCost = it->first;
121 if (tempCost >= currentOptimal)
return found ? 1 : 0;
122 T tempSol = it->second;
123 partialSols.erase(it);
129 currentOptimal = tempCost;
139 it2 != children.end(); ++it2)
142 bool alreadyPresent =
false;
147 range = partialSols.equal_range(cost);
150 it3 !=
range.second; ++it3)
151 if (it3->second == *it2)
153 alreadyPresent =
true;
162 return found ? 1 : 0;
double Tac() noexcept
Stops the stopwatch.
Abstract graph and tree data structures, plus generic graph algorithms.
virtual bool isSolutionEnded(const T &sol)=0
Client code must implement this method.
A high-performance stopwatch, with typical resolution of nanoseconds.
double getTotalCost(const T &sol)
Calculates the total cost (known+estimated) of a solution.
virtual void generateChildren(const T &sol, std::vector< T > &sols)=0
Client code must implement this method.
virtual bool isSolutionValid(const T &sol)=0
Client code must implement this method.
This class is intended to efficiently solve graph-search problems using heuristics to determine the b...
int getOptimalSolution(const T &initialSol, T &finalSol, double upperLevel=HUGE_VAL, double maxComputationTime=HUGE_VAL)
Finds the optimal solution for a problem, using the A* algorithm.
virtual double getCost(const T &sol)=0
Client code must implement this method.
virtual double getHeuristic(const T &sol)=0
Client code must implement this method.
void Tic() noexcept
Starts the stopwatch.
const Scalar * const_iterator