50 size_t N = m_modes.size();
51 double X = 0, Y = 0, Z = 0;
58 for (it = m_modes.begin(); it != m_modes.end(); ++it)
61 sumW +=
w = exp(it->log_w);
62 X += it->val.mean.x() *
w;
63 Y += it->val.mean.y() *
w;
64 Z += it->val.mean.z() *
w;
85 size_t N = m_modes.size();
100 for (it = m_modes.begin(); it != m_modes.end(); ++it)
103 sumW +=
w = exp(it->log_w);
108 estMean_i -= estMean;
109 partCov.multiply_AAt(estMean_i);
110 partCov += it->val.cov;
115 if (sumW != 0) estCov *= (1.0 / sumW);
133 for (it = m_modes.begin(); it != m_modes.end(); ++it)
137 out << it->val.cov(0, 0) << it->val.cov(1, 1) << it->val.cov(2, 2);
138 out << it->val.cov(0, 1) << it->val.cov(0, 2) << it->val.cov(1, 2);
161 for (it = m_modes.begin(); it != m_modes.end(); ++it)
166 if (version == 0) it->log_w = log(max(1e-300, it->log_w));
171 it->val.cov(0, 0) =
x;
173 it->val.cov(1, 1) =
x;
175 it->val.cov(2, 2) =
x;
178 it->val.cov(1, 0) =
x;
179 it->val.cov(0, 1) =
x;
181 it->val.cov(2, 0) =
x;
182 it->val.cov(0, 2) =
x;
184 it->val.cov(1, 2) =
x;
185 it->val.cov(2, 1) =
x;
198 if (
this == &o)
return;
202 m_modes =
static_cast<const CPointPDFSOG*
>(&o)->m_modes;
208 m_modes[0].log_w = 0;
224 it != m_modes.end(); ++it)
226 f,
"%e %e %e %e %e %e %e %e %e %e\n", exp(it->log_w),
227 it->val.mean.x(), it->val.mean.y(), it->val.mean.z(),
228 it->val.cov(0, 0), it->val.cov(1, 1), it->val.cov(2, 2),
229 it->val.cov(0, 1), it->val.cov(0, 2), it->val.cov(1, 2));
240 it->val.changeCoordinatesReference(newReferenceBase);
253 vector<double> logWeights(m_modes.size());
254 vector<size_t> outIdxs;
257 for (it = m_modes.begin(), itW = logWeights.begin(); it != m_modes.end();
261 CParticleFilterCapable::computeResampling(
262 CParticleFilter::prMultinomial,
268 size_t selectedIdx = outIdxs[0];
269 ASSERT_(selectedIdx < m_modes.size());
277 outSample.
x(selMode->mean.x() + vec[0]);
278 outSample.
y(selMode->mean.y() + vec[1]);
279 outSample.z(selMode->mean.z() + vec[2]);
289 const double& minMahalanobisDistToDrop)
305 float minMahalanobisDistToDrop2 =
square(minMahalanobisDistToDrop);
307 this->m_modes.clear();
312 it1 != p1->m_modes.end(); ++it1)
317 if (
c.get_unsafe(2, 2) == 0)
320 c.set_unsafe(2, 2, 1);
332 double a = -0.5 * (3 * log(
M_2PI) - log(covInv.det()) +
333 eta.multiply_HtCH_scalar(
337 it2 != p2->
m_modes.end(); ++it2)
339 auxSOG_Kernel_i = (*it2).val;
340 if (auxSOG_Kernel_i.
cov.get_unsafe(2, 2) == 0)
342 auxSOG_Kernel_i.
cov.set_unsafe(2, 2, 1);
346 auxSOG_Kernel_i.
cov(0, 0) > 0 && auxSOG_Kernel_i.
cov(1, 1) > 0)
349 bool reallyComputeThisOne =
true;
350 if (minMahalanobisDistToDrop > 0)
356 max(auxSOG_Kernel_i.
cov.get_unsafe(0, 0),
357 (*it1).val.cov.get_unsafe(0, 0));
359 square(auxSOG_Kernel_i.
mean.
x() - (*it1).val.mean.x()) /
363 max(auxSOG_Kernel_i.
cov.get_unsafe(1, 1),
364 (*it1).val.cov.get_unsafe(1, 1));
366 square(auxSOG_Kernel_i.
mean.
y() - (*it1).val.mean.y()) /
372 max(auxSOG_Kernel_i.
cov.get_unsafe(2, 2),
373 (*it1).val.cov.get_unsafe(2, 2));
375 square(auxSOG_Kernel_i.
mean.z() - (*it1).val.mean.z()) /
379 reallyComputeThisOne = mahaDist2 < minMahalanobisDistToDrop2;
382 if (reallyComputeThisOne)
397 newKernel.
val = auxGaussianProduct;
401 eta_i = covInv_i * eta_i;
405 new_eta_i = new_covInv_i * new_eta_i;
409 (3 * log(
M_2PI) - log(new_covInv_i.det()) +
410 (eta_i.adjoint() * auxSOG_Kernel_i.
cov * eta_i)(0, 0));
412 -0.5 * (3 * log(
M_2PI) - log(new_covInv_i.det()) +
413 (new_eta_i.adjoint() * newKernel.
val.
cov *
417 (it1)->log_w + (it2)->log_w +
a + a_i - new_a_i;
420 if (is2D) newKernel.
val.
cov(2, 2) = 0;
423 this->m_modes.push_back(newKernel);
445 it->val.cov(0, 1) = it->val.cov(1, 0);
446 it->val.cov(0, 2) = it->val.cov(2, 0);
447 it->val.cov(1, 2) = it->val.cov(2, 1);
460 if (!m_modes.size())
return;
463 double maxW = m_modes[0].log_w;
464 for (it = m_modes.begin(); it != m_modes.end(); ++it)
465 maxW = max(maxW, it->log_w);
467 for (it = m_modes.begin(); it != m_modes.end(); ++it) it->log_w -= maxW;
482 double sumLinearWeights = 0;
483 for (it = m_modes.begin(); it != m_modes.end(); ++it)
484 sumLinearWeights += exp(it->log_w);
487 for (it = m_modes.begin(); it != m_modes.end(); ++it)
488 cum +=
square(exp(it->log_w) / sumLinearWeights);
493 return 1.0 / (m_modes.size() * cum);
501 float x_min,
float x_max,
float y_min,
float y_max,
float resolutionXY,
502 float z,
CMatrixD& outMatrix,
bool sumOverAllZs)
510 const size_t Nx = (size_t)ceil((x_max - x_min) / resolutionXY);
511 const size_t Ny = (size_t)ceil((y_max - y_min) / resolutionXY);
512 outMatrix.setSize(Ny, Nx);
514 for (
size_t i = 0; i < Ny; i++)
516 const float y = y_min + i * resolutionXY;
517 for (
size_t j = 0; j < Nx; j++)
519 float x = x_min + j * resolutionXY;
520 outMatrix(i, j) = evaluatePDF(
CPoint3D(
x,
y,
z), sumOverAllZs);
541 it != m_modes.end(); ++it)
552 CMatrixD X(2, 1), MU(2, 1), COV(2, 2);
559 it != m_modes.end(); ++it)
561 MU(0, 0) = it->val.mean.x();
562 MU(1, 0) = it->val.mean.y();
564 COV(0, 0) = it->val.cov(0, 0);
565 COV(1, 1) = it->val.cov(1, 1);
566 COV(0, 1) = COV(1, 0) = it->val.cov(0, 1);
587 for (
const_iterator it = m_modes.begin(); it != m_modes.end(); ++it)
588 if (it_best == m_modes.end() || it->log_w > it_best->log_w)
591 outVal = it_best->val;
A namespace of pseudo-random numbers genrators of diferent distributions.
void writeToStream(mrpt::utils::CStream &out, int *getVersion) const override
Introduces a pure virtual method responsible for writing to a CStream.
double x() const
Common members of all points & poses classes.
EIGEN_STRONG_INLINE bool empty() const
Classes for serialization, sockets, ini-file manipulation, streams, list of properties-values, timewatch, extensions to STL.
This class is a "CSerializable" wrapper for "CMatrixTemplateNumeric<double>".
This namespace provides a OS-independent interface to many useful functions: filenames manipulation...
void getMean(CPoint3D &mean_point) const override
Returns an estimate of the point, (the mean, or mathematical expectation of the PDF) ...
int void fclose(FILE *f)
An OS-independent version of fclose.
#define IMPLEMENTS_SERIALIZABLE(class_name, base, NameSpace)
This must be inserted in all CSerializable classes implementation files.
CPoint3D mean
The mean value.
The namespace for Bayesian filtering algorithm: different particle filters and Kalman filter algorith...
void resize(const size_t N)
Resize the number of SOG modes.
Declares a class that represents a Probability Density function (PDF) of a 3D point ...
The struct for each mode:
Column vector, like Eigen::MatrixX*, but automatically initialized to zeros since construction...
void clear()
Clear all the gaussian modes.
void drawSingleSample(CPoint3D &outSample) const override
Draw a sample from the pdf.
const Scalar * const_iterator
GLubyte GLubyte GLubyte GLubyte w
T square(const T x)
Inline function for the square of a number.
virtual const mrpt::utils::TRuntimeClassId * GetRuntimeClass() const override
Returns information about the class of an object in runtime.
void bayesianFusion(const CPointPDFGaussian &p1, const CPointPDFGaussian &p2)
Bayesian fusion of two points gauss.
This base class is used to provide a unified interface to files,memory buffers,..Please see the deriv...
This base provides a set of functions for maths stuff.
#define CLASS_ID(T)
Access to runtime class ID for a defined class name.
#define MRPT_THROW_UNKNOWN_SERIALIZATION_VERSION(__V)
For use in CSerializable implementations.
mrpt::math::CMatrixDouble33 cov
The 3x3 covariance matrix.
std::deque< TGaussianMode >::const_iterator const_iterator
void normalizeWeights()
Normalize the weights in m_modes such as the maximum log-weight is 0.
void getCovarianceAndMean(mrpt::math::CMatrixDouble33 &cov, CPoint3D &mean_point) const override
Returns an estimate of the point covariance matrix (3x3 cov matrix) and the mean, both at once...
GLsizei const GLchar ** string
A class used to store a 3D point.
Declares a class that represents a probability density function (pdf) of a 2D pose (x...
Classes for 2D/3D geometry representation, both of single values and probability density distribution...
void readFromStream(mrpt::utils::CStream &in, int version) override
Introduces a pure virtual method responsible for loading from a CStream This can not be used directly...
int fprintf(FILE *fil, const char *format,...) noexcept MRPT_printf_format_check(2
An OS-independent version of fprintf.
void saveToTextFile(const std::string &file) const override
Save the density to a text file, with the following format: There is one row per Gaussian "mode"...
void changeCoordinatesReference(const CPose3D &newReferenceBase) override
this = p (+) this.
void copyFrom(const CPointPDF &o) override
Copy operator, translating if necesary (for example, between particles and gaussian representations) ...
A class used to store a 3D pose (a 3D translation + a rotation in 3D).
double ESS() const
Computes the "Effective sample size" (typical measure for Particle Filters), applied to the weights o...
void bayesianFusion(const CPointPDF &p1, const CPointPDF &p2, const double &minMahalanobisDistToDrop=0) override
Bayesian fusion of two point distributions (product of two distributions->new distribution), then save the result in this object (WARNING: See implementing classes to see classes that can and cannot be mixtured!)
void evaluatePDFInArea(float x_min, float x_max, float y_min, float y_max, float resolutionXY, float z, mrpt::math::CMatrixD &outMatrix, bool sumOverAllZs=false)
Evaluates the PDF within a rectangular grid and saves the result in a matrix (each row contains value...
double log_w
The log-weight.
void getMostLikelyMode(CPointPDFGaussian &outVal) const
Return the Gaussian mode with the highest likelihood (or an empty Gaussian if there are no modes in t...
FILE * fopen(const char *fileName, const char *mode) noexcept
An OS-independent version of fopen.
virtual void getCovarianceAndMean(mrpt::math::CMatrixFixedNumeric< double, STATE_LEN, STATE_LEN > &cov, TDATA &mean_point) const =0
Returns an estimate of the pose covariance matrix (STATE_LENxSTATE_LEN cov matrix) and the mean...
void drawGaussianMultivariate(std::vector< T > &out_result, const mrpt::math::CMatrixTemplateNumeric< T > &cov, const std::vector< T > *mean=nullptr)
Generate multidimensional random samples according to a given covariance matrix.
unsigned __int32 uint32_t
CRandomGenerator & getRandomGenerator()
A static instance of a CRandomGenerator class, for use in single-thread applications.
Declares a class that represents a Probability Distribution function (PDF) of a 3D point (x...
double normalPDF(double x, double mu, double std)
Evaluates the univariate normal (Gaussian) distribution at a given point "x".
GLubyte GLubyte GLubyte a
double evaluatePDF(const CPoint3D &x, bool sumOverAllZs) const
Evaluates the PDF at a given point.
CListGaussianModes m_modes
The list of SOG modes.
A gaussian distribution for 3D points.
CMatrixFixedNumeric< double, 3, 1 > CMatrixDouble31
void assureSymmetry()
Assures the symmetry of the covariance matrix (eventually certain operations in the math-coprocessor ...