class mrpt::maps::COccupancyGridMap2D¶
A class for storing an occupancy grid map.
COccupancyGridMap2D is a class for storing a metric map representation in the form of a probabilistic occupancy grid map: value of 0 means certainly occupied, 1 means a certainly empty cell. Initially 0.5 means uncertainty.
The cells keep the log-odd representation of probabilities instead of the probabilities themselves. More details can be found at https://www.mrpt.org/Occupancy_Grids
The algorithm for updating the grid from a laser scanner can optionally take into account the progressive widening of the beams, as described in this page
Some implemented methods are:
Update of individual cells
Insertion of observations
Voronoi diagram and critical points (buildVoronoiDiagram)
Saving and loading from/to a bitmap
Laser scans simulation for the map contents
Entropy and information methods (See computeEntropy)
#include <mrpt/maps/COccupancyGridMap2D.h> class COccupancyGridMap2D: public mrpt::maps::CMetricMap, public mrpt::maps::CLogOddsGridMap2D { public: // typedefs typedef OccGridCellTraits::cellType cellType; typedef OccGridCellTraits::cellTypeUnsigned cellTypeUnsigned; typedef std::pair<double, mrpt::math::TPoint2D> TPairLikelihoodIndex; // enums enum TLaserSimulUncertaintyMethod; enum TLikelihoodMethod; // structs struct TCriticalPointsList; struct TEntropyInfo; struct TLaserSimulUncertaintyParams; struct TLaserSimulUncertaintyResult; struct TUpdateCellsInfoChangeOnly; // classes class TInsertionOptions; class TLikelihoodOptions; class TLikelihoodOutput; // fields static constexpr cellType OCCGRID_CELLTYPE_MIN = CLogOddsGridMap2D<cellType>::CELLTYPE_MIN; static constexpr cellType OCCGRID_CELLTYPE_MAX = CLogOddsGridMap2D<cellType>::CELLTYPE_MAX; static double RAYTRACE_STEP_SIZE_IN_CELL_UNITS = 0.8; struct mrpt::maps::COccupancyGridMap2D::TUpdateCellsInfoChangeOnly updateInfoChangeOnly; TInsertionOptions insertionOptions; mrpt::maps::COccupancyGridMap2D::TLikelihoodOptions likelihoodOptions; class mrpt::maps::COccupancyGridMap2D::TLikelihoodOutput likelihoodOutputs; struct mrpt::maps::COccupancyGridMap2D::TCriticalPointsList CriticalPointsList; // construction COccupancyGridMap2D( float min_x = -20.0f, float max_x = 20.0f, float min_y = -20.0f, float max_y = 20.0f, float resolution = 0.05f ); // methods void buildVoronoiDiagram( float threshold, float robot_size, int x1 = 0, int x2 = 0, int y1 = 0, int y2 = 0 ); uint16_t getVoroniClearance(int cx, int cy) const; const mrpt::containers::CDynamicGrid<uint8_t>& getBasisMap() const; const mrpt::containers::CDynamicGrid<uint16_t>& getVoronoiDiagram() const; void findCriticalPoints(float filter_distance); void laserScanSimulator( mrpt::obs::CObservation2DRangeScan& inout_Scan, const mrpt::poses::CPose2D& robotPose, float threshold = 0.6f, size_t N = 361, float noiseStd = 0, unsigned int decimation = 1, float angleNoiseStd = mrpt::DEG2RAD(.0) ) const; void sonarSimulator( mrpt::obs::CObservationRange& inout_observation, const mrpt::poses::CPose2D& robotPose, float threshold = 0.5f, float rangeNoiseStd = 0.f, float angleNoiseStd = mrpt::DEG2RAD(0.f) ) const; void simulateScanRay( const double x, const double y, const double angle_direction, float& out_range, bool& out_valid, const double max_range_meters, const float threshold_free = 0.4f, const double noiseStd = .0, const double angleNoiseStd = .0 ) const; void laserScanSimulatorWithUncertainty(const TLaserSimulUncertaintyParams& in_params, TLaserSimulUncertaintyResult& out_results) const; const std::vector<cellType>& getRawMap() const; void updateCell(int x, int y, float v); void fill(float default_value = 0.5f); void setSize( float x_min, float x_max, float y_min, float y_max, float resolution, float default_value = 0.5f ); void resizeGrid( float new_x_min, float new_x_max, float new_y_min, float new_y_max, float new_cells_default_value = 0.5f, bool additionalMargin = true ); double getArea() const; unsigned int getSizeX() const; unsigned int getSizeY() const; float getXMin() const; float getXMax() const; float getYMin() const; float getYMax() const; float getResolution() const; int x2idx(float x) const; int y2idx(float y) const; int x2idx(double x) const; int y2idx(double y) const; float idx2x(const size_t cx) const; float idx2y(const size_t cy) const; int x2idx(float x, float xmin) const; int y2idx( float y, float ymin ) const; void setCell(int x, int y, float value); float getCell(int x, int y) const; cellType* getRow(int cy); const cellType* getRow(int cy) const; void setPos(float x, float y, float value); float getPos(float x, float y) const; bool isStaticPos(float x, float y, float threshold = 0.7f) const; bool isStaticCell( int cx, int cy, float threshold = 0.7f ) const; void setBasisCell(int x, int y, uint8_t value); unsigned char getBasisCell(int x, int y) const; void copyMapContentFrom(const COccupancyGridMap2D& otherMap); void subSample(int downRatio); void computeEntropy(TEntropyInfo& info) const; int computeClearance( int cx, int cy, int* basis_x, int* basis_y, int* nBasis, bool GetContourPoint = false ) const; float computeClearance(float x, float y, float maxSearchDistance) const; float computePathCost(float x1, float y1, float x2, float y2) const; double computeLikelihoodField_Thrun(const CPointsMap* pm, const mrpt::poses::CPose2D* relativePose = nullptr); double computeLikelihoodField_II(const CPointsMap* pm, const mrpt::poses::CPose2D* relativePose = nullptr); bool saveAsBitmapFile(const std::string& file) const; template <class CLANDMARKSMAP> bool saveAsBitmapFileWithLandmarks( const std::string& file, const CLANDMARKSMAP* landmarks, bool addTextLabels = false, const mrpt::img::TColor& marks_color = mrpt::img::TColor(0, 0, 255) ) const; void getAsImage( mrpt::img::CImage& img, bool verticalFlip = false, bool forceRGB = false, bool tricolor = false ) const; void getAsImageFiltered(img::CImage& img, bool verticalFlip = false, bool forceRGB = false) const; virtual void getAs3DObject(mrpt::opengl::CSetOfObjects::Ptr& outObj) const; void getAsPointCloud(mrpt::maps::CSimplePointsMap& pm, const float occup_threshold = 0.5f) const; virtual bool isEmpty() const; bool loadFromBitmapFile( const std::string& file, float resolution, const mrpt::math::TPoint2D& origin = mrpt::math::TPoint2D(std::numeric_limits<double>::max(), std::numeric_limits<double>::max()) ); bool loadFromBitmap( const mrpt::img::CImage& img, float resolution, const mrpt::math::TPoint2D& origin = mrpt::math::TPoint2D(std::numeric_limits<double>::max(), std::numeric_limits<double>::max()) ); virtual void determineMatching2D( const mrpt::maps::CMetricMap* otherMap, const mrpt::poses::CPose2D& otherMapPose, mrpt::tfest::TMatchingPairList& correspondences, const TMatchingParams& params, TMatchingExtraResults& extraResults ) const; virtual float compute3DMatchingRatio(const mrpt::maps::CMetricMap* otherMap, const mrpt::poses::CPose3D& otherMapPose, const TMatchingRatioParams& params) const; virtual void saveMetricMapRepresentationToFile(const std::string& filNamePrefix) const; static float l2p(const cellType l); static uint8_t l2p_255(const cellType l); static cellType p2l(const float p); static bool saveAsBitmapTwoMapsWithCorrespondences( const std::string& fileName, const COccupancyGridMap2D* m1, const COccupancyGridMap2D* m2, const mrpt::tfest::TMatchingPairList& corrs ); static bool saveAsEMFTwoMapsWithCorrespondences( const std::string& fileName, const COccupancyGridMap2D* m1, const COccupancyGridMap2D* m2, const mrpt::tfest::TMatchingPairList& corrs ); };
Inherited Members¶
public: // typedefs typedef TCELL cell_t; // methods virtual bool isEmpty() const = 0; virtual void saveMetricMapRepresentationToFile(const std::string& filNamePrefix) const = 0; virtual void getAs3DObject(mrpt::opengl::CSetOfObjects::Ptr& outObj) const = 0; static void updateCell_fast_occupied( const unsigned x, const unsigned y, const cell_t logodd_obs, const cell_t thres, cell_t* mapArray, const unsigned _size_x ); static void updateCell_fast_occupied(cell_t* theCell, const cell_t logodd_obs, const cell_t thres); static void updateCell_fast_free( const unsigned x, const unsigned y, const cell_t logodd_obs, const cell_t thres, cell_t* mapArray, const unsigned _size_x ); static void updateCell_fast_free(cell_t* theCell, const cell_t logodd_obs, const cell_t thres);
Typedefs¶
typedef OccGridCellTraits::cellType cellType
The type of the map cells:
typedef std::pair<double, mrpt::math::TPoint2D> TPairLikelihoodIndex
Auxiliary private class.
Fields¶
static constexpr cellType OCCGRID_CELLTYPE_MIN = CLogOddsGridMap2D<cellType>::CELLTYPE_MIN
Discrete to float conversion factors: The min/max values of the integer cell type, eg.
[0,255] or [0,65535]
static double RAYTRACE_STEP_SIZE_IN_CELL_UNITS = 0.8
(Default:1.0) Can be set to <1 if a more fine raytracing is needed in sonarSimulator() and laserScanSimulator(), or >1 to speed it up.
TInsertionOptions insertionOptions
With this struct options are provided to the observation insertion process.
See also:
CObservation::insertIntoGridMap
Construction¶
COccupancyGridMap2D( float min_x = -20.0f, float max_x = 20.0f, float min_y = -20.0f, float max_y = 20.0f, float resolution = 0.05f )
Constructor.
Methods¶
void buildVoronoiDiagram( float threshold, float robot_size, int x1 = 0, int x2 = 0, int y1 = 0, int y2 = 0 )
Build the Voronoi diagram of the grid map.
Parameters:
threshold |
The threshold for binarizing the map. |
robot_size |
Size in “units” (meters) of robot, approx. |
x1 |
Left coordinate of area to be computed. Default, entire map. |
x2 |
Right coordinate of area to be computed. Default, entire map. |
y1 |
Top coordinate of area to be computed. Default, entire map. |
y2 |
Bottom coordinate of area to be computed. Default, entire map. |
See also:
uint16_t getVoroniClearance(int cx, int cy) const
Reads a the clearance of a cell (in centimeters), after building the Voronoi diagram with buildVoronoiDiagram.
const mrpt::containers::CDynamicGrid<uint8_t>& getBasisMap() const
Return the auxiliary “basis” map built while building the Voronoi diagram.
See also:
const mrpt::containers::CDynamicGrid<uint16_t>& getVoronoiDiagram() const
Return the Voronoi diagram; each cell contains the distance to its closer obstacle, or 0 if not part of the Voronoi diagram.
See also:
void findCriticalPoints(float filter_distance)
Builds a list with the critical points from Voronoi diagram, which must must be built before calling this method.
Parameters:
filter_distance |
The minimum distance between two critical points. |
See also:
void laserScanSimulator( mrpt::obs::CObservation2DRangeScan& inout_Scan, const mrpt::poses::CPose2D& robotPose, float threshold = 0.6f, size_t N = 361, float noiseStd = 0, unsigned int decimation = 1, float angleNoiseStd = mrpt::DEG2RAD(.0) ) const
Simulates a laser range scan into the current grid map.
The simulated scan is stored in a CObservation2DRangeScan object, which is also used to pass some parameters: all previously stored characteristics (as aperture,…) are taken into account for simulation. Only a few more parameters are needed. Additive gaussian noise can be optionally added to the simulated scan.
Parameters:
inout_Scan |
[IN/OUT] This must be filled with desired parameters before calling, and will contain the scan samples on return. |
robotPose |
[IN] The robot pose in this map coordinates. Recall that sensor pose relative to this robot pose must be specified in the observation object. |
threshold |
[IN] The minimum occupancy threshold to consider a cell to be occupied (Default: 0.5f) |
N |
[IN] The count of range scan “rays”, by default to 361. |
noiseStd |
[IN] The standard deviation of measurement noise. If not desired, set to 0. |
decimation |
[IN] The rays that will be simulated are at indexes: 0, D, 2D, 3D, … Default is D=1 |
angleNoiseStd |
[IN] The sigma of an optional Gaussian noise added to the angles at which ranges are measured (in radians). |
See also:
laserScanSimulatorWithUncertainty(), sonarSimulator(), COccupancyGridMap2D::RAYTRACE_STEP_SIZE_IN_CELL_UNITS
void sonarSimulator( mrpt::obs::CObservationRange& inout_observation, const mrpt::poses::CPose2D& robotPose, float threshold = 0.5f, float rangeNoiseStd = 0.f, float angleNoiseStd = mrpt::DEG2RAD(0.f) ) const
Simulates the observations of a sonar rig into the current grid map.
The simulated ranges are stored in a CObservationRange object, which is also used to pass in some needed parameters, as the poses of the sonar sensors onto the mobile robot.
Parameters:
inout_observation |
[IN/OUT] This must be filled with desired parameters before calling, and will contain the simulated ranges on return. |
robotPose |
[IN] The robot pose in this map coordinates. Recall that sensor pose relative to this robot pose must be specified in the observation object. |
threshold |
[IN] The minimum occupancy threshold to consider a cell to be occupied (Default: 0.5f) |
rangeNoiseStd |
[IN] The standard deviation of measurement noise. If not desired, set to 0. |
angleNoiseStd |
[IN] The sigma of an optional Gaussian noise added to the angles at which ranges are measured (in radians). |
See also:
laserScanSimulator(), COccupancyGridMap2D::RAYTRACE_STEP_SIZE_IN_CELL_UNITS
void simulateScanRay( const double x, const double y, const double angle_direction, float& out_range, bool& out_valid, const double max_range_meters, const float threshold_free = 0.4f, const double noiseStd = .0, const double angleNoiseStd = .0 ) const
Simulate just one “ray” in the grid map.
This method is used internally to sonarSimulator and laserScanSimulator.
See also:
COccupancyGridMap2D::RAYTRACE_STEP_SIZE_IN_CELL_UNITS
void laserScanSimulatorWithUncertainty(const TLaserSimulUncertaintyParams& in_params, TLaserSimulUncertaintyResult& out_results) const
Like laserScanSimulatorWithUncertainty() (see it for a discussion of most parameters) but taking into account the robot pose uncertainty and generating a vector of predicted variances for each ray.
Range uncertainty includes both, sensor noise and large non-linear effects caused by borders and discontinuities in the environment as seen from different robot poses.
Parameters:
in_params |
[IN] Input settings. See TLaserSimulUncertaintyParams |
in_params |
[OUT] Output range + uncertainty. |
See also:
laserScanSimulator(), COccupancyGridMap2D::RAYTRACE_STEP_SIZE_IN_CELL_UNITS
const std::vector<cellType>& getRawMap() const
Read-only access to the raw cell contents (cells are in log-odd units)
void updateCell(int x, int y, float v)
Performs the Bayesian fusion of a new observation of a cell.
See also:
updateInfoChangeOnly, updateCell_fast_occupied, updateCell_fast_free
void fill(float default_value = 0.5f)
Fills all the cells with a default value.
void setSize( float x_min, float x_max, float y_min, float y_max, float resolution, float default_value = 0.5f )
Change the size of gridmap, erasing all its previous contents.
Parameters:
x_min |
The “x” coordinates of left most side of grid. |
x_max |
The “x” coordinates of right most side of grid. |
y_min |
The “y” coordinates of top most side of grid. |
y_max |
The “y” coordinates of bottom most side of grid. |
resolution |
The new size of cells. |
default_value |
The value of cells, tipically 0.5. |
See also:
ResizeGrid
void resizeGrid( float new_x_min, float new_x_max, float new_y_min, float new_y_max, float new_cells_default_value = 0.5f, bool additionalMargin = true )
Change the size of gridmap, maintaining previous contents.
Parameters:
new_x_min |
The “x” coordinates of new left most side of grid. |
new_x_max |
The “x” coordinates of new right most side of grid. |
new_y_min |
The “y” coordinates of new top most side of grid. |
new_y_max |
The “y” coordinates of new bottom most side of grid. |
new_cells_default_value |
The value of the new cells, tipically 0.5. |
additionalMargin |
If set to true (default), an additional margin of a few meters will be added to the grid, ONLY if the new coordinates are larger than current ones. |
See also:
double getArea() const
Returns the area of the gridmap, in square meters.
unsigned int getSizeX() const
Returns the horizontal size of grid map in cells count.
unsigned int getSizeY() const
Returns the vertical size of grid map in cells count.
float getXMin() const
Returns the “x” coordinate of left side of grid map.
float getXMax() const
Returns the “x” coordinate of right side of grid map.
float getYMin() const
Returns the “y” coordinate of top side of grid map.
float getYMax() const
Returns the “y” coordinate of bottom side of grid map.
float getResolution() const
Returns the resolution of the grid map.
int x2idx(float x) const
Transform a coordinate value into a cell index.
float idx2x(const size_t cx) const
Transform a cell index into a coordinate value.
int x2idx(float x, float xmin) const
Transform a coordinate value into a cell index, using a diferent “x_min” value.
void setCell(int x, int y, float value)
Change the contents [0,1] of a cell, given its index.
float getCell(int x, int y) const
Read the real valued [0,1] contents of a cell, given its index.
cellType* getRow(int cy)
Access to a “row”: mainly used for drawing grid as a bitmap efficiently, do not use it normally.
const cellType* getRow(int cy) const
Access to a “row”: mainly used for drawing grid as a bitmap efficiently, do not use it normally.
void setPos(float x, float y, float value)
Change the contents [0,1] of a cell, given its coordinates.
float getPos(float x, float y) const
Read the real valued [0,1] contents of a cell, given its coordinates.
bool isStaticPos(float x, float y, float threshold = 0.7f) const
Returns “true” if cell is “static”, i.e.if its occupancy is below a given threshold.
void setBasisCell(int x, int y, uint8_t value)
Change a cell in the “basis” maps.Used for Voronoi calculation.
unsigned char getBasisCell(int x, int y) const
Reads a cell in the “basis” maps.Used for Voronoi calculation.
void copyMapContentFrom(const COccupancyGridMap2D& otherMap)
copy the gridmap contents, but not all the options, from another map instance
void subSample(int downRatio)
Performs a downsampling of the gridmap, by a given factor: resolution/=ratio.
void computeEntropy(TEntropyInfo& info) const
Computes the entropy and related values of this grid map.
The entropy is computed as the summed entropy of each cell, taking them as discrete random variables following a Bernoulli distribution:
Parameters:
info |
The output information is returned here |
int computeClearance( int cx, int cy, int* basis_x, int* basis_y, int* nBasis, bool GetContourPoint = false ) const
Compute the clearance of a given cell, and returns its two first basis (closest obstacle) points.Used to build Voronoi and critical points.
Parameters:
cx |
The cell index |
cy |
The cell index |
basis_x |
Target buffer for coordinates of basis, having a size of two “ints”. |
basis_y |
Target buffer for coordinates of basis, having a size of two “ints”. |
nBasis |
The number of found basis: Can be 0,1 or 2. |
GetContourPoint |
If “true” the basis are not returned, but the closest free cells.Default at false. |
Returns:
The clearance of the cell, in 1/100 of “cell”.
See also:
Build_VoronoiDiagram
float computeClearance(float x, float y, float maxSearchDistance) const
An alternative method for computing the clearance of a given location (in meters).
Returns:
The clearance (distance to closest OCCUPIED cell), in meters.
float computePathCost(float x1, float y1, float x2, float y2) const
Compute the ‘cost’ of traversing a segment of the map according to the occupancy of traversed cells.
Returns:
This returns ‘1-mean(traversed cells occupancy)’, i.e. 0.5 for unknown cells, 1 for a free path.
double computeLikelihoodField_Thrun(const CPointsMap* pm, const mrpt::poses::CPose2D* relativePose = nullptr)
Computes the likelihood [0,1] of a set of points, given the current grid map as reference.
Parameters:
pm |
The points map |
relativePose |
The relative pose of the points map in this map’s coordinates, or nullptr for (0,0,0). See “likelihoodOptions” for configuration parameters. |
double computeLikelihoodField_II(const CPointsMap* pm, const mrpt::poses::CPose2D* relativePose = nullptr)
Computes the likelihood [0,1] of a set of points, given the current grid map as reference.
Parameters:
pm |
The points map |
relativePose |
The relative pose of the points map in this map’s coordinates, or nullptr for (0,0,0). See “likelihoodOptions” for configuration parameters. |
bool saveAsBitmapFile(const std::string& file) const
Saves the gridmap as a graphical file (BMP,PNG,…).
The format will be derived from the file extension (see CImage::saveToFile )
Returns:
False on any error.
template <class CLANDMARKSMAP> bool saveAsBitmapFileWithLandmarks( const std::string& file, const CLANDMARKSMAP* landmarks, bool addTextLabels = false, const mrpt::img::TColor& marks_color = mrpt::img::TColor(0, 0, 255) ) const
Saves the gridmap as a graphical bitmap file, 8 bit gray scale, 1 pixel is 1 cell, and with an overlay of landmarks.
The template parameter CLANDMARKSMAP is assumed to be mrpt::maps::CLandmarksMap normally.
Returns:
False on any error.
void getAsImage( mrpt::img::CImage& img, bool verticalFlip = false, bool forceRGB = false, bool tricolor = false ) const
Returns the grid as a 8-bit graylevel image, where each pixel is a cell (output image is RGB only if forceRGB is true) If “tricolor” is true, only three gray levels will appear in the image: gray for unobserved cells, and black/white for occupied/empty cells respectively.
See also:
void getAsImageFiltered(img::CImage& img, bool verticalFlip = false, bool forceRGB = false) const
Returns the grid as a 8-bit graylevel image, where each pixel is a cell (output image is RGB only if forceRGB is true) - This method filters the image for easy feature detection If “tricolor” is true, only three gray levels will appear in the image: gray for unobserved cells, and black/white for occupied/empty cells respectively.
See also:
virtual void getAs3DObject(mrpt::opengl::CSetOfObjects::Ptr& outObj) const
Returns a 3D plane with its texture being the occupancy grid and transparency proportional to “uncertainty” (i.e.
a value of 0.5 is fully transparent)
void getAsPointCloud(mrpt::maps::CSimplePointsMap& pm, const float occup_threshold = 0.5f) const
Get a point cloud with all (border) occupied cells as points.
virtual bool isEmpty() const
Returns true upon map construction or after calling clear(), the return changes to false upon successful insertObservation() or any other method to load data in the map.
bool loadFromBitmapFile( const std::string& file, float resolution, const mrpt::math::TPoint2D& origin = mrpt::math::TPoint2D(std::numeric_limits<double>::max(), std::numeric_limits<double>::max()) )
Load the gridmap from a image in a file (the format can be any supported by CImage::loadFromFile).
Parameters:
file |
The file to be loaded. |
resolution |
The size of a pixel (cell), in meters. Recall cells are always squared, so just a dimension is needed. |
origin |
The |
Returns:
False on any error.
See also:
bool loadFromBitmap( const mrpt::img::CImage& img, float resolution, const mrpt::math::TPoint2D& origin = mrpt::math::TPoint2D(std::numeric_limits<double>::max(), std::numeric_limits<double>::max()) )
Load the gridmap from a image in a file (the format can be any supported by CImage::loadFromFile).
See loadFromBitmapFile() for the meaning of parameters
virtual void determineMatching2D( const mrpt::maps::CMetricMap* otherMap, const mrpt::poses::CPose2D& otherMapPose, mrpt::tfest::TMatchingPairList& correspondences, const TMatchingParams& params, TMatchingExtraResults& extraResults ) const
See the base class for more details: In this class it is implemented as correspondences of the passed points map to occupied cells.
NOTICE: That the “z” dimension is ignored in the points. Clip the points as appropiated if needed before calling this method.
See also:
computeMatching3DWith
virtual float compute3DMatchingRatio( const mrpt::maps::CMetricMap* otherMap, const mrpt::poses::CPose3D& otherMapPose, const TMatchingRatioParams& params ) const
See docs in base class: in this class this always returns 0.
virtual void saveMetricMapRepresentationToFile(const std::string& filNamePrefix) const
This virtual method saves the map to a file “filNamePrefix”+< some_file_extension >, as an image or in any other applicable way (Notice that other methods to save the map may be implemented in classes implementing this virtual interface).
static float l2p(const cellType l)
Scales an integer representation of the log-odd into a real valued probability in [0,1], using p=exp(l)/(1+exp(l))
static uint8_t l2p_255(const cellType l)
Scales an integer representation of the log-odd into a linear scale [0,255], using p=exp(l)/(1+exp(l))
static cellType p2l(const float p)
Scales a real valued probability in [0,1] to an integer representation of: log(p)-log(1-p) in the valid range of cellType.
static bool saveAsBitmapTwoMapsWithCorrespondences( const std::string& fileName, const COccupancyGridMap2D* m1, const COccupancyGridMap2D* m2, const mrpt::tfest::TMatchingPairList& corrs )
Saves a composite image with two gridmaps and lines representing a set of correspondences between them.
Returns:
False on any error.
See also:
saveAsEMFTwoMapsWithCorrespondences
static bool saveAsEMFTwoMapsWithCorrespondences( const std::string& fileName, const COccupancyGridMap2D* m1, const COccupancyGridMap2D* m2, const mrpt::tfest::TMatchingPairList& corrs )
Saves a composite image with two gridmaps and numbers for the correspondences between them.
Returns:
False on any error.
See also: