25 template <
class TDATA,
size_t STATE_LEN>
40 virtual void getMean(TDATA& mean_point)
const = 0;
48 TDATA& mean_point)
const = 0;
153 size_t N, std::vector<mrpt::math::CVectorDouble>& outSamples)
const 155 outSamples.resize(N);
157 for (
size_t i = 0; i < N; i++)
160 pnt.getAsVector(outSamples[i]);
170 static const double ln_2PI = 1.8378770664093454835606594728112;
171 return 0.5 * (STATE_LEN + STATE_LEN * ln_2PI +
174 std::numeric_limits<double>::epsilon())));
mrpt::math::CMatrixFixedNumeric< double, STATE_LEN, STATE_LEN > getCovariance() const
Returns the estimate of the covariance matrix (STATE_LEN x STATE_LEN covariance matrix) ...
EIGEN_STRONG_INLINE Scalar det() const
virtual bool isInfType() const
Returns whether the class instance holds the uncertainty in covariance or information form...
void getCovariance(mrpt::math::CMatrixFixedNumeric< double, STATE_LEN, STATE_LEN > &cov) const
Returns the estimate of the covariance matrix (STATE_LEN x STATE_LEN covariance matrix) ...
virtual void getCovarianceAndMean(mrpt::math::CMatrixFixedNumeric< double, STATE_LEN, STATE_LEN > &cov, TDATA &mean_point) const =0
Returns an estimate of the pose covariance matrix (STATE_LENxSTATE_LEN cov matrix) and the mean...
virtual void drawManySamples(size_t N, std::vector< mrpt::math::CVectorDouble > &outSamples) const
Draws a number of samples from the distribution, and saves as a list of 1xSTATE_LEN vectors...
virtual void getMean(TDATA &mean_point) const =0
Returns the mean, or mathematical expectation of the probability density distribution (PDF)...
virtual void getInformationMatrix(mrpt::math::CMatrixFixedNumeric< double, STATE_LEN, STATE_LEN > &inf) const
Returns the information (inverse covariance) matrix (a STATE_LEN x STATE_LEN matrix) Unless reimpleme...
void getCovariance(mrpt::math::CMatrixDouble &cov) const
Returns the estimate of the covariance matrix (STATE_LEN x STATE_LEN covariance matrix) ...
TDATA getMeanVal() const
Returns the mean, or mathematical expectation of the probability density distribution (PDF)...
void getCovarianceDynAndMean(mrpt::math::CMatrixDouble &cov, TDATA &mean_point) const
Returns an estimate of the pose covariance matrix (STATE_LENxSTATE_LEN cov matrix) and the mean...
A numeric matrix of compile-time fixed size.
This base provides a set of functions for maths stuff.
GLsizei const GLchar ** string
static constexpr size_t state_length
The length of the variable, for example, 3 for a 3D point, 6 for a 3D pose (x y z yaw pitch roll)...
virtual void drawSingleSample(TDATA &outPart) const =0
Draws a single sample from the distribution.
double getCovarianceEntropy() const
Compute the entropy of the estimated covariance matrix.
Eigen::Matrix< typename MATRIX::Scalar, MATRIX::ColsAtCompileTime, MATRIX::ColsAtCompileTime > cov(const MATRIX &v)
Computes the covariance matrix from a list of samples in an NxM matrix, where each row is a sample...
virtual bool saveToTextFile(const std::string &file) const =0
Save PDF's particles to a text file.
A generic template for probability density distributions (PDFs).
CPose2D type_value
The type of the state the PDF represents.