MRPT  1.9.9
CProbabilityDensityFunction.h
Go to the documentation of this file.
1 /* +------------------------------------------------------------------------+
2  | Mobile Robot Programming Toolkit (MRPT) |
3  | http://www.mrpt.org/ |
4  | |
5  | Copyright (c) 2005-2018, Individual contributors, see AUTHORS file |
6  | See: http://www.mrpt.org/Authors - All rights reserved. |
7  | Released under BSD License. See details in http://www.mrpt.org/License |
8  +------------------------------------------------------------------------+ */
9 #pragma once
10 
13 #include <mrpt/math/math_frwds.h>
14 
15 namespace mrpt::math
16 {
17 /** A generic template for probability density distributions (PDFs).
18  * This template is used as base for many classes in mrpt::poses
19  * Any derived class must implement \a getMean() and a getCovarianceAndMean().
20  * Other methods such as \a getMean() or \a getCovariance() are implemented
21  * here for convenience.
22  * \sa mprt::poses::CPosePDF, mprt::poses::CPose3DPDF, mprt::poses::CPointPDF
23  * \ingroup mrpt_math_grp
24  */
25 template <class TDATA, size_t STATE_LEN>
27 {
28  public:
29  /** The length of the variable, for example, 3 for a 3D point, 6 for a 3D
30  * pose (x y z yaw pitch roll). */
31  static constexpr size_t state_length = STATE_LEN;
32  /** The type of the state the PDF represents */
33  using type_value = TDATA;
35 
36  /** Returns the mean, or mathematical expectation of the probability density
37  * distribution (PDF).
38  * \sa getCovarianceAndMean, getInformationMatrix
39  */
40  virtual void getMean(TDATA& mean_point) const = 0;
41 
42  /** Returns an estimate of the pose covariance matrix (STATE_LENxSTATE_LEN
43  * cov matrix) and the mean, both at once.
44  * \sa getMean, getInformationMatrix
45  */
46  virtual void getCovarianceAndMean(
48  TDATA& mean_point) const = 0;
49 
50  /** Returns an estimate of the pose covariance matrix (STATE_LENxSTATE_LEN
51  * cov matrix) and the mean, both at once.
52  * \sa getMean, getInformationMatrix
53  */
55  mrpt::math::CMatrixDouble& cov, TDATA& mean_point) const
56  {
59  this->getCovarianceAndMean(C, mean_point);
60  cov = C; // Convert to dynamic size matrix
61  }
62 
63  /** Returns the mean, or mathematical expectation of the probability density
64  * distribution (PDF).
65  * \sa getCovariance, getInformationMatrix
66  */
67  inline TDATA getMeanVal() const
68  {
69  TDATA p;
70  getMean(p);
71  return p;
72  }
73 
74  /** Returns the estimate of the covariance matrix (STATE_LEN x STATE_LEN
75  * covariance matrix)
76  * \sa getMean, getCovarianceAndMean, getInformationMatrix
77  */
79  {
80  TDATA p;
81  this->getCovarianceDynAndMean(cov, p);
82  }
83 
84  /** Returns the estimate of the covariance matrix (STATE_LEN x STATE_LEN
85  * covariance matrix)
86  * \sa getMean, getCovarianceAndMean, getInformationMatrix
87  */
88  inline void getCovariance(
90  const
91  {
92  TDATA p;
93  this->getCovarianceAndMean(cov, p);
94  }
95 
96  /** Returns the estimate of the covariance matrix (STATE_LEN x STATE_LEN
97  * covariance matrix)
98  * \sa getMean, getInformationMatrix
99  */
102  {
105  TDATA p;
106  this->getCovarianceAndMean(cov, p);
107  return cov;
108  }
109 
110  /** Returns whether the class instance holds the uncertainty in covariance
111  * or information form.
112  * \note By default this is going to be covariance form. *Inf classes
113  * (e.g. CPosePDFGaussianInf) store it in information form.
114  *
115  * \sa mrpt::traits::is_inf_type
116  */
117  virtual bool isInfType() const { return false; }
118  /** Returns the information (inverse covariance) matrix (a STATE_LEN x
119  * STATE_LEN matrix)
120  * Unless reimplemented in derived classes, this method first reads the
121  * covariance, then invert it.
122  * \sa getMean, getCovarianceAndMean
123  */
124  virtual void getInformationMatrix(
126  const
127  {
130  TDATA p;
131  this->getCovarianceAndMean(cov, p);
132  cov.inv_fast(
133  inf); // Destroy source cov matrix, since we don't need it anymore.
134  }
135 
136  /** Save PDF's particles to a text file. See derived classes for more
137  * information about the format of generated files.
138  * \return false on error
139  */
140  virtual bool saveToTextFile(const std::string& file) const = 0;
141 
142  /** Draws a single sample from the distribution
143  */
144  virtual void drawSingleSample(TDATA& outPart) const = 0;
145 
146  /** Draws a number of samples from the distribution, and saves as a list of
147  * 1xSTATE_LEN vectors, where each row contains a (x,y,z,yaw,pitch,roll)
148  * datum.
149  * This base method just call N times to drawSingleSample, but derived
150  * classes should implemented optimized method for each particular PDF.
151  */
152  virtual void drawManySamples(
153  size_t N, std::vector<mrpt::math::CVectorDouble>& outSamples) const
154  {
155  outSamples.resize(N);
156  TDATA pnt;
157  for (size_t i = 0; i < N; i++)
158  {
159  this->drawSingleSample(pnt);
160  pnt.getAsVector(outSamples[i]);
161  }
162  }
163 
164  /** Compute the entropy of the estimated covariance matrix.
165  * \sa
166  * http://en.wikipedia.org/wiki/Multivariate_normal_distribution#Entropy
167  */
168  double getCovarianceEntropy() const
169  {
170  static const double ln_2PI = 1.8378770664093454835606594728112;
171  return 0.5 * (STATE_LEN + STATE_LEN * ln_2PI +
172  log(std::max(
173  getCovariance().det(),
174  std::numeric_limits<double>::epsilon())));
175  }
176 
177 }; // End of class def.
178 
179 } // namespace mrpt::math
mrpt::math::CMatrixFixedNumeric< double, STATE_LEN, STATE_LEN > getCovariance() const
Returns the estimate of the covariance matrix (STATE_LEN x STATE_LEN covariance matrix) ...
EIGEN_STRONG_INLINE Scalar det() const
virtual bool isInfType() const
Returns whether the class instance holds the uncertainty in covariance or information form...
void getCovariance(mrpt::math::CMatrixFixedNumeric< double, STATE_LEN, STATE_LEN > &cov) const
Returns the estimate of the covariance matrix (STATE_LEN x STATE_LEN covariance matrix) ...
virtual void getCovarianceAndMean(mrpt::math::CMatrixFixedNumeric< double, STATE_LEN, STATE_LEN > &cov, TDATA &mean_point) const =0
Returns an estimate of the pose covariance matrix (STATE_LENxSTATE_LEN cov matrix) and the mean...
virtual void drawManySamples(size_t N, std::vector< mrpt::math::CVectorDouble > &outSamples) const
Draws a number of samples from the distribution, and saves as a list of 1xSTATE_LEN vectors...
virtual void getMean(TDATA &mean_point) const =0
Returns the mean, or mathematical expectation of the probability density distribution (PDF)...
virtual void getInformationMatrix(mrpt::math::CMatrixFixedNumeric< double, STATE_LEN, STATE_LEN > &inf) const
Returns the information (inverse covariance) matrix (a STATE_LEN x STATE_LEN matrix) Unless reimpleme...
void getCovariance(mrpt::math::CMatrixDouble &cov) const
Returns the estimate of the covariance matrix (STATE_LEN x STATE_LEN covariance matrix) ...
TDATA getMeanVal() const
Returns the mean, or mathematical expectation of the probability density distribution (PDF)...
void getCovarianceDynAndMean(mrpt::math::CMatrixDouble &cov, TDATA &mean_point) const
Returns an estimate of the pose covariance matrix (STATE_LENxSTATE_LEN cov matrix) and the mean...
A numeric matrix of compile-time fixed size.
This base provides a set of functions for maths stuff.
GLsizei const GLchar ** string
Definition: glext.h:4101
static constexpr size_t state_length
The length of the variable, for example, 3 for a 3D point, 6 for a 3D pose (x y z yaw pitch roll)...
virtual void drawSingleSample(TDATA &outPart) const =0
Draws a single sample from the distribution.
double getCovarianceEntropy() const
Compute the entropy of the estimated covariance matrix.
Eigen::Matrix< typename MATRIX::Scalar, MATRIX::ColsAtCompileTime, MATRIX::ColsAtCompileTime > cov(const MATRIX &v)
Computes the covariance matrix from a list of samples in an NxM matrix, where each row is a sample...
Definition: ops_matrices.h:148
virtual bool saveToTextFile(const std::string &file) const =0
Save PDF&#39;s particles to a text file.
GLfloat GLfloat p
Definition: glext.h:6305
A generic template for probability density distributions (PDFs).
CPose2D type_value
The type of the state the PDF represents.



Page generated by Doxygen 1.8.14 for MRPT 1.9.9 Git: 7d5e6d718 Fri Aug 24 01:51:28 2018 +0200 at lun nov 2 08:35:50 CET 2020