Main MRPT website > C++ reference for MRPT 1.9.9
CEllipsoidInverseDepth2D.h
Go to the documentation of this file.
1 /* +------------------------------------------------------------------------+
2  | Mobile Robot Programming Toolkit (MRPT) |
3  | http://www.mrpt.org/ |
4  | |
5  | Copyright (c) 2005-2017, Individual contributors, see AUTHORS file |
6  | See: http://www.mrpt.org/Authors - All rights reserved. |
7  | Released under BSD License. See details in http://www.mrpt.org/License |
8  +------------------------------------------------------------------------+ */
9 #ifndef opengl_CEllipsoidInverseDepth2D_H
10 #define opengl_CEllipsoidInverseDepth2D_H
11 
13 
14 namespace mrpt
15 {
16 namespace opengl
17 {
18 /** An especial "ellipsoid" in 3D computed as the uncertainty iso-surfaces of a
19  * (inv_range,yaw) variable.
20  * The parameter space of this ellipsoid comprises these variables (in this
21  * order):
22  * - inv_range: The inverse distance from the sensor to the feature.
23  * - yaw: Angle for the rotation around +Z ("azimuth").
24  *
25  * This parameterization is a 2D version of that presented in the paper:
26  * - Civera, J. and Davison, A.J. and Montiel, J., "Inverse depth
27  * parametrization for monocular SLAM", T-RO, 2008.
28  *
29  * This class expects you to provide a mean vector of length 4 and a 4x4
30  * covariance matrix, set with \a setCovMatrixAndMean().
31  *
32  * Please read the documentation of
33  * CGeneralizedEllipsoidTemplate::setQuantiles() for learning
34  * the mathematical details about setting the desired confidence interval.
35  *
36  * <div align="center">
37  * <table border="0" cellspan="4" cellspacing="4" style="border-width: 1px;
38  * border-style: solid;">
39  * <tr> <td> mrpt::opengl::CEllipsoidInverseDepth2D </td> <td> \image html
40  * preview_CEllipsoidInverseDepth2D.png </td> </tr>
41  * </table>
42  * </div>
43  *
44  * \ingroup mrpt_opengl_grp
45  */
47 {
50 
51  public:
52  /** The maximum range to be used as a correction when a point of the
53  * ellipsoid falls in the negative ranges (default: 1e6) */
54  void setUnderflowMaxRange(const double maxRange)
55  {
56  m_underflowMaxRange = maxRange;
57  }
58  double getUnderflowMaxRange() const { return m_underflowMaxRange; }
59  protected:
60  /** To be implemented by derived classes: maps, using some arbitrary space
61  * transformation, a list of points
62  * defining an ellipsoid in parameter space into their corresponding
63  * points in 2D/3D space.
64  */
65  virtual void transformFromParameterSpace(
66  const std::vector<BASE::array_parameter_t>& in_pts,
67  std::vector<BASE::array_point_t>& out_pts) const override;
68 
69  private:
71 
72  public:
73  /** Constructor
74  */
76  /** Private, virtual destructor: only can be deleted from smart pointers */
78 };
79 
80 } // end namespace
81 
82 } // End of namespace
83 
84 #endif
virtual ~CEllipsoidInverseDepth2D()
Private, virtual destructor: only can be deleted from smart pointers.
void setUnderflowMaxRange(const double maxRange)
The maximum range to be used as a correction when a point of the ellipsoid falls in the negative rang...
An especial "ellipsoid" in 3D computed as the uncertainty iso-surfaces of a (inv_range,yaw) variable.
virtual void transformFromParameterSpace(const std::vector< BASE::array_parameter_t > &in_pts, std::vector< BASE::array_point_t > &out_pts) const override
To be implemented by derived classes: maps, using some arbitrary space transformation, a list of points defining an ellipsoid in parameter space into their corresponding points in 2D/3D space.
A class that generalizes the concept of an ellipsoid to arbitrary parameterizations of uncertainty sh...
This is the global namespace for all Mobile Robot Programming Toolkit (MRPT) libraries.
#define DEFINE_SERIALIZABLE(class_name)
This declaration must be inserted in all CSerializable classes definition, within the class declarati...
CGeneralizedEllipsoidTemplate< 2 > BASE



Page generated by Doxygen 1.8.14 for MRPT 1.9.9 Git: ae4571287 Thu Nov 23 00:06:53 2017 +0100 at dom oct 27 23:51:55 CET 2019