Example: bayes_resampling_example
C++ example source code:
/* +------------------------------------------------------------------------+ | Mobile Robot Programming Toolkit (MRPT) | | https://www.mrpt.org/ | | | | Copyright (c) 2005-2022, Individual contributors, see AUTHORS file | | See: https://www.mrpt.org/Authors - All rights reserved. | | Released under BSD License. See: https://www.mrpt.org/License | +------------------------------------------------------------------------+ */ #include <mrpt/bayes/CParticleFilterCapable.h> #include <mrpt/io/vector_loadsave.h> #include <mrpt/math/data_utils.h> #include <mrpt/math/ops_vectors.h> #include <mrpt/math/utils.h> #include <mrpt/random.h> #include <mrpt/system/filesystem.h> #include <iostream> #include <map> using namespace mrpt::bayes; using namespace mrpt::math; using namespace mrpt::random; using namespace mrpt::system; using namespace mrpt::io; using namespace std; double MIN_LOG_WEIG = -1.0; unsigned int N_TESTS = 500; int N_PARTICLES = 100; // For batch experiment: CVectorDouble min_log_ws; map<string, CVectorDouble> results; // vectorToTextFile( out_indxs, #ALGOR, true, true); /* By rows, append */ #define TEST_RESAMPLING(ALGOR) \ mrpt::system::deleteFile(#ALGOR); \ /*printf(#ALGOR);*/ \ /*printf("\n");*/ \ ERR_MEANs.clear(); \ ERR_STDs.clear(); \ for (size_t i = 0; i < N_TESTS; i++) \ { \ mrpt::random::getRandomGenerator().drawUniformVector( \ log_ws, MIN_LOG_WEIG, 0.0); \ CParticleFilterCapable::log2linearWeights(log_ws, lin_ws); \ CParticleFilterCapable::computeResampling( \ CParticleFilter::ALGOR, log_ws, out_indxs); \ hist_parts = mrpt::math::histogram(out_indxs, 0, M - 1, M, true); \ vector<double> errs_hist = lin_ws - hist_parts; \ ERR_MEANs.push_back(mrpt::math::mean(errs_hist)); \ ERR_STDs.push_back(mrpt::math::stddev(errs_hist)); \ } \ printf("%s: ERR_MEAN %e\n", #ALGOR, mrpt::math::mean(ERR_MEANs)); \ printf("%s: ERR_STD %f\n", #ALGOR, mrpt::math::mean(ERR_STDs)); \ results[#ALGOR].push_back(mrpt::math::mean(ERR_STDs)); // ------------------------------------------------------ // TestResampling // ------------------------------------------------------ void TestResampling() { vector<double> log_ws; std::vector<size_t> out_indxs; const size_t M = N_PARTICLES; log_ws.resize(M); // vectorToTextFile( log_ws, "log_ws.txt"); // Compute normalized linear weights: vector<double> lin_ws; vector<double> hist_parts; vector<double> ERR_MEANs; vector<double> ERR_STDs; // prMultinomial TEST_RESAMPLING(prMultinomial) // prResidual TEST_RESAMPLING(prResidual) // prStratified TEST_RESAMPLING(prStratified) // prSystematic TEST_RESAMPLING(prSystematic) } void TestBatch() { for (double LL = -2; LL <= 2.01; LL += 0.08) { double L = pow(10.0, LL); min_log_ws.push_back(L); printf("MIN_LOG_W=%f\n", L); MIN_LOG_WEIG = L; TestResampling(); } // Save results to files: CVectorDouble R; vectorToTextFile(min_log_ws, "min_log_ws.txt"); R = results["prMultinomial"]; vectorToTextFile(R, "prMultinomial.txt"); R = results["prResidual"]; vectorToTextFile(R, "prResidual.txt"); R = results["prStratified"]; vectorToTextFile(R, "prStratified.txt"); R = results["prSystematic"]; vectorToTextFile(R, "prSystematic.txt"); } // ------------------------------------------------------ // MAIN // ------------------------------------------------------ int main(int argc, char** argv) { try { getRandomGenerator().randomize(); if (argc > 1) N_PARTICLES = atoi(argv[1]); // TestResampling(); TestBatch(); return 0; } catch (exception& e) { std::cerr << "MRPT error: " << mrpt::exception_to_str(e) << std::endl; return -1; } catch (...) { cerr << "Untyped excepcion!!"; return -1; } }