class mrpt::slam::CMonteCarloLocalization2D
Overview
Declares a class that represents a Probability Density Function (PDF) over a 2D pose (x,y,phi), using a set of weighted samples.
This class also implements particle filtering for robot localization. See the MRPT application “app/pf-localization” for an example of usage.
See also:
CMonteCarloLocalization3D, CPose2D, CPosePDF, CPoseGaussianPDF, CParticleFilterCapable
#include <mrpt/slam/CMonteCarloLocalization2D.h> class CMonteCarloLocalization2D: public mrpt::poses::CPosePDFParticles, public mrpt::slam::PF_implementation { public: // typedefs typedef T CParticleDataContent; typedef CProbabilityParticle<T, STORAGE> CParticleData; typedef std::deque<CParticleData> CParticleList; typedef double(*)(const bayes::CParticleFilter::TParticleFilterOptions&PF_options, const CParticleFilterCapable*obj, size_t index, const void*action, const void*observation) TParticleProbabilityEvaluator; // fields TMonteCarloLocalizationParams options; CParticleList m_particles; // construction CMonteCarloLocalization2D(size_t M = 1); // methods virtual mrpt::math::TPose3D getLastPose(size_t i, bool& is_valid_pose) const; virtual void PF_SLAM_implementation_custom_update_particle_with_new_pose( mrpt::math::TPose2D* particleData, const mrpt::math::TPose3D& newPose ) const; void PF_SLAM_implementation_replaceByNewParticleSet( CParticleList& old_particles, const std::vector<mrpt::math::TPose3D>& newParticles, const std::vector<double>& newParticlesWeight, const std::vector<size_t>& newParticlesDerivedFromIdx ) const; virtual double PF_SLAM_computeObservationLikelihoodForParticle( const mrpt::bayes::CParticleFilter::TParticleFilterOptions& PF_options, size_t particleIndexForMap, const mrpt::obs::CSensoryFrame& observation, const mrpt::poses::CPose3D& x ) const; virtual void PF_SLAM_implementation_replaceByNewParticleSet( typename mrpt::bayes::CParticleFilterData<mrpt::math::TPose2D, STORAGE>::CParticleList& old_particles, const std::vector<mrpt::math::TPose3D>& newParticles, const std::vector<double>& newParticlesWeight, const std::vector<size_t>& newParticlesDerivedFromIdx ) const; virtual bool PF_SLAM_implementation_skipRobotMovement() const; void resetUniformFreeSpace( mrpt::maps::COccupancyGridMap2D* theMap, const double freeCellsThreshold = 0.7, const int particlesCount = -1, const double x_min = -1e10f, const double x_max = 1e10f, const double y_min = -1e10f, const double y_max = 1e10f, const double phi_min = -M_PI, const double phi_max = M_PI ); virtual void prediction_and_update_pfStandardProposal(const mrpt::obs::CActionCollection* action, const mrpt::obs::CSensoryFrame* observation, const bayes::CParticleFilter::TParticleFilterOptions& PF_options); virtual void prediction_and_update_pfAuxiliaryPFStandard(const mrpt::obs::CActionCollection* action, const mrpt::obs::CSensoryFrame* observation, const bayes::CParticleFilter::TParticleFilterOptions& PF_options); virtual void prediction_and_update_pfAuxiliaryPFOptimal(const mrpt::obs::CActionCollection* action, const mrpt::obs::CSensoryFrame* observation, const bayes::CParticleFilter::TParticleFilterOptions& PF_options); mrpt::opengl::CSetOfObjects::Ptr getVisualization() const; void clear(); virtual void copyFrom(const CPosePDF& o); void resetDeterministic(const mrpt::math::TPose2D& location, size_t particlesCount = 0); void resetUniform( const double x_min, const double x_max, const double y_min, const double y_max, const double phi_min = -M_PI, const double phi_max = M_PI, const int particlesCount = -1 ); void resetAroundSetOfPoses( const std::vector<mrpt::math::TPose2D>& list_poses, size_t num_particles_per_pose, const double spread_x, const double spread_y, const double spread_phi_rad ); virtual std::tuple<cov_mat_t, type_value> getCovarianceAndMean() const; mrpt::math::TPose2D getParticlePose(size_t i) const; virtual bool saveToTextFile(const std::string& file) const; size_t size() const; virtual void changeCoordinatesReference(const CPose3D& newReferenceBase); void drawSingleSample(CPose2D& outPart) const; void operator += (const mrpt::math::TPose2D& Ap); void append(CPosePDFParticles& o); virtual void inverse(CPosePDF& o) const; mrpt::math::TPose2D getMostLikelyParticle() const; virtual void bayesianFusion(const CPosePDF& p1, const CPosePDF& p2, const double minMahalanobisDistToDrop = 0); double evaluatePDF_parzen( const double x, const double y, const double phi, const double stdXY, const double stdPhi ) const; void saveParzenPDFToTextFile( const char* fileName, const double x_min, const double x_max, const double y_min, const double y_max, const double phi, const double stepSizeXY, const double stdXY, const double stdPhi ) const; virtual std::string asString() const; template <class OPENGL_SETOFOBJECTSPTR> void getAs3DObject(OPENGL_SETOFOBJECTSPTR& out_obj) const; template <class OPENGL_SETOFOBJECTSPTR> OPENGL_SETOFOBJECTSPTR getAs3DObject() const; void clearParticles(); template <class STREAM> void writeParticlesToStream(STREAM& out) const; template <class STREAM> void readParticlesFromStream(STREAM& in); void getWeights(std::vector<double>& out_logWeights) const; const CPosePDFParticles& derived() const; CPosePDFParticles& derived(); virtual double getW(size_t i) const; virtual void setW(size_t i, double w); virtual size_t particlesCount() const; virtual double normalizeWeights(double* out_max_log_w = nullptr); virtual double ESS() const; virtual void performSubstitution(const std::vector<size_t>& indx); void prepareFastDrawSample( const bayes::CParticleFilter::TParticleFilterOptions& PF_options, TParticleProbabilityEvaluator partEvaluator = defaultEvaluator, const void* action = nullptr, const void* observation = nullptr ) const; size_t fastDrawSample(const bayes::CParticleFilter::TParticleFilterOptions& PF_options) const; void prediction_and_update(const mrpt::obs::CActionCollection* action, const mrpt::obs::CSensoryFrame* observation, const bayes::CParticleFilter::TParticleFilterOptions& PF_options); void performResampling(const bayes::CParticleFilter::TParticleFilterOptions& PF_options, size_t out_particle_count = 0); bool PF_SLAM_implementation_gatherActionsCheckBothActObs(const mrpt::obs::CActionCollection* actions, const mrpt::obs::CSensoryFrame* sf); static void jacobiansPoseComposition( const CPose2D& x, const CPose2D& u, mrpt::math::CMatrixDouble33& df_dx, mrpt::math::CMatrixDouble33& df_du, const bool compute_df_dx = true, const bool compute_df_du = true ); static void jacobiansPoseComposition(const CPosePDFGaussian& x, const CPosePDFGaussian& u, mrpt::math::CMatrixDouble33& df_dx, mrpt::math::CMatrixDouble33& df_du); static double defaultEvaluator( ] const bayes::CParticleFilter::TParticleFilterOptions& PF_options, ] const CParticleFilterCapable* obj, size_t index, ] const void* action, ] const void* observation ); static void computeResampling( CParticleFilter::TParticleResamplingAlgorithm method, const std::vector<double>& in_logWeights, std::vector<size_t>& out_indexes, size_t out_particle_count = 0 ); static void log2linearWeights( const std::vector<double>& in_logWeights, std::vector<double>& out_linWeights ); };
Inherited Members
public: // typedefs typedef CProbabilityDensityFunction<TDATA, STATE_LEN> self_t; // structs struct TFastDrawAuxVars; struct TMsg; // fields static const particle_storage_mode PARTICLE_STORAGE = STORAGE; // methods virtual void copyFrom(const CPosePDF& o) = 0; virtual void bayesianFusion(const CPosePDF& p1, const CPosePDF& p2, const double minMahalanobisDistToDrop = 0) = 0; virtual void inverse(CPosePDF& o) const = 0; virtual void changeCoordinatesReference(const CPose3D& newReferenceBase) = 0; virtual double getW(size_t i) const = 0; virtual void setW(size_t i, double w) = 0; virtual size_t particlesCount() const = 0; virtual void performSubstitution(const std::vector<size_t>& indx) = 0; virtual double normalizeWeights(double* out_max_log_w = nullptr) = 0; virtual double ESS() const = 0; void getMean(CPose2D& mean_pose) const; virtual mrpt::math::TPose3D getLastPose(size_t i, bool& is_valid_pose) const = 0; virtual void PF_SLAM_implementation_custom_update_particle_with_new_pose(PARTICLE_TYPE* particleData, const mrpt::math::TPose3D& newPose) const = 0; virtual bool PF_SLAM_implementation_doWeHaveValidObservations( ] const typename mrpt::bayes::CParticleFilterData<PARTICLE_TYPE, STORAGE>::CParticleList& particles, ] const mrpt::obs::CSensoryFrame* sf ) const; virtual double PF_SLAM_computeObservationLikelihoodForParticle( const mrpt::bayes::CParticleFilter::TParticleFilterOptions& PF_options, size_t particleIndexForMap, const mrpt::obs::CSensoryFrame& observation, const mrpt::poses::CPose3D& x ) const = 0; template <class BINTYPE> double PF_SLAM_particlesEvaluator_AuxPFOptimal( const mrpt::bayes::CParticleFilter::TParticleFilterOptions& PF_options, const mrpt::bayes::CParticleFilterCapable* obj, size_t index, ] const void* action, const void* observation );
Typedefs
typedef T CParticleDataContent
This is the type inside the corresponding CParticleData class.
typedef CProbabilityParticle<T, STORAGE> CParticleData
Use this to refer to each element in the m_particles array.
typedef std::deque<CParticleData> CParticleList
Use this type to refer to the list of particles m_particles.
typedef double(*)(const bayes::CParticleFilter::TParticleFilterOptions&PF_options, const CParticleFilterCapable*obj, size_t index, const void*action, const void*observation) TParticleProbabilityEvaluator
A callback function type for evaluating the probability of m_particles of being selected, used in “fastDrawSample”.
The default evaluator function “defaultEvaluator” simply returns the particle weight.
Parameters:
index |
This is the index of the particle its probability is being computed. |
action |
The value of this is the parameter passed to “prepareFastDrawSample” |
observation |
The value of this is the parameter passed to “prepareFastDrawSample” The action and the observation are declared as “void*” for a greater flexibility. |
See also:
Fields
TMonteCarloLocalizationParams options
MCL parameters.
CParticleList m_particles
The array of particles.
Construction
CMonteCarloLocalization2D(size_t M = 1)
Constructor.
Parameters:
M |
The number of m_particles. |
Methods
virtual mrpt::math::TPose3D getLastPose(size_t i, bool& is_valid_pose) const
Return the robot pose for the i’th particle.
is_valid is always true in this class.
virtual double PF_SLAM_computeObservationLikelihoodForParticle( const mrpt::bayes::CParticleFilter::TParticleFilterOptions& PF_options, size_t particleIndexForMap, const mrpt::obs::CSensoryFrame& observation, const mrpt::poses::CPose3D& x ) const
Evaluate the observation likelihood for one particle at a given location.
virtual void PF_SLAM_implementation_replaceByNewParticleSet( typename mrpt::bayes::CParticleFilterData<mrpt::math::TPose2D, STORAGE>::CParticleList& old_particles, const std::vector<mrpt::math::TPose3D>& newParticles, const std::vector<double>& newParticlesWeight, const std::vector<size_t>& newParticlesDerivedFromIdx ) const
This is the default algorithm to efficiently replace one old set of samples by another new set.
The method uses pointers to make fast copies the first time each particle is duplicated, then makes real copies for the next ones.
Note that more efficient specializations might exist for specific particle data structs.
virtual bool PF_SLAM_implementation_skipRobotMovement() const
Make a specialization if needed, eg.
in the first step in SLAM.
void resetUniformFreeSpace( mrpt::maps::COccupancyGridMap2D* theMap, const double freeCellsThreshold = 0.7, const int particlesCount = -1, const double x_min = -1e10f, const double x_max = 1e10f, const double y_min = -1e10f, const double y_max = 1e10f, const double phi_min = -M_PI, const double phi_max = M_PI )
Reset the PDF to an uniformly distributed one, but only in the free-space of a given 2D occupancy-grid-map.
Orientation is randomly generated in the whole 2*PI range.
Parameters:
theMap |
The occupancy grid map |
freeCellsThreshold |
The minimum free-probability to consider a cell as empty (default is 0.7) |
particlesCount |
If set to -1 the number of m_particles remains unchanged. |
x_min |
The limits of the area to look for free cells. |
x_max |
The limits of the area to look for free cells. |
y_min |
The limits of the area to look for free cells. |
y_max |
The limits of the area to look for free cells. |
phi_min |
The limits of the area to look for free cells. |
phi_max |
The limits of the area to look for free cells. |
std::exception |
On any error (no free cell found in map, map=nullptr, etc…) |
See also:
resetDeterm32inistic
virtual void prediction_and_update_pfStandardProposal( const mrpt::obs::CActionCollection* action, const mrpt::obs::CSensoryFrame* observation, const bayes::CParticleFilter::TParticleFilterOptions& PF_options )
Update the m_particles, predicting the posterior of robot pose and map after a movement command.
This method has additional configuration parameters in “options”. Performs the update stage of the RBPF, using the sensed CSensoryFrame:
Parameters:
action |
This is a pointer to CActionCollection, containing the pose change the robot has been commanded. |
observation |
This must be a pointer to a CSensoryFrame object, with robot sensed observations. |
See also:
virtual void prediction_and_update_pfAuxiliaryPFStandard( const mrpt::obs::CActionCollection* action, const mrpt::obs::CSensoryFrame* observation, const bayes::CParticleFilter::TParticleFilterOptions& PF_options )
Update the m_particles, predicting the posterior of robot pose and map after a movement command.
This method has additional configuration parameters in “options”. Performs the update stage of the RBPF, using the sensed CSensoryFrame:
Parameters:
Action |
This is a pointer to CActionCollection, containing the pose change the robot has been commanded. |
observation |
This must be a pointer to a CSensoryFrame object, with robot sensed observations. |
See also:
virtual void prediction_and_update_pfAuxiliaryPFOptimal( const mrpt::obs::CActionCollection* action, const mrpt::obs::CSensoryFrame* observation, const bayes::CParticleFilter::TParticleFilterOptions& PF_options )
Update the m_particles, predicting the posterior of robot pose and map after a movement command.
This method has additional configuration parameters in “options”. Performs the update stage of the RBPF, using the sensed CSensoryFrame:
Parameters:
Action |
This is a pointer to CActionCollection, containing the pose change the robot has been commanded. |
observation |
This must be a pointer to a CSensoryFrame object, with robot sensed observations. |
See also:
mrpt::opengl::CSetOfObjects::Ptr getVisualization() const
Returns a 3D representation of this PDF.
Needs the mrpt-opengl library, and using mrpt::opengl::CSetOfObjects::Ptr as template argument.
void clear()
Free all the memory associated to m_particles, and set the number of parts = 0.
virtual void copyFrom(const CPosePDF& o)
Copy operator, translating if necesary (for example, between m_particles and gaussian representations)
void resetDeterministic(const mrpt::math::TPose2D& location, size_t particlesCount = 0)
Reset the PDF to a single point: All m_particles will be set exactly to the supplied pose.
Parameters:
location |
The location to set all the m_particles. |
particlesCount |
If this is set to 0 the number of m_particles remains unchanged. |
See also:
resetUniform, CMonteCarloLocalization2D::resetUniformFreeSpace, resetAroundSetOfPoses
void resetUniform( const double x_min, const double x_max, const double y_min, const double y_max, const double phi_min = -M_PI, const double phi_max = M_PI, const int particlesCount = -1 )
Reset the PDF to an uniformly distributed one, inside of the defined 2D area [x_min,x_max]x[y_min,y_max]
(in meters) and for orientations [phi_min, phi_max]
(in radians).
Orientations can be outside of the [-pi,pi] range if so desired, but it must hold phi_max>=phi_min
.
Parameters:
particlesCount |
New particle count, or leave count unchanged if set to -1 (default). |
See also:
resetDeterministic, CMonteCarloLocalization2D::resetUniformFreeSpace, resetAroundSetOfPoses
void resetAroundSetOfPoses( const std::vector<mrpt::math::TPose2D>& list_poses, size_t num_particles_per_pose, const double spread_x, const double spread_y, const double spread_phi_rad )
Reset the PDF to a multimodal distribution over a set of “spots” (x,y,phi) The total number of particles will be list_poses.size() * num_particles_per_pose
.
Particles will be spread uniformly in a box of width spread_{x,y,phi_rad}
in each of the three coordinates (meters, radians), so it can be understood as the “initial uncertainty”.
Parameters:
list_poses |
The poses (x,y,phi) around which particles will be spread. Must contains at least one pose. |
num_particles_per_pose |
Number of particles to be spread around each of the “spots” in list_poses. Must be >=1. |
See also:
resetDeterministic, CMonteCarloLocalization2D::resetUniformFreeSpace
virtual std::tuple<cov_mat_t, type_value> getCovarianceAndMean() const
Returns an estimate of the pose covariance matrix (STATE_LENxSTATE_LEN cov matrix) and the mean, both at once.
See also:
mrpt::math::TPose2D getParticlePose(size_t i) const
Returns the pose of the i’th particle.
virtual bool saveToTextFile(const std::string& file) const
Save PDF’s m_particles to a text file.
In each line it will go: “x y phi weight”
size_t size() const
Get the m_particles count (equivalent to “particlesCount”)
virtual void changeCoordinatesReference(const CPose3D& newReferenceBase)
this = p (+) this.
This can be used to convert a PDF from local coordinates to global, providing the point (newReferenceBase) from which “to project” the current pdf. Result PDF substituted the currently stored one in the object.
void drawSingleSample(CPose2D& outPart) const
Draws a single sample from the distribution (WARNING: weights are assumed to be normalized!)
void operator += (const mrpt::math::TPose2D& Ap)
Appends (pose-composition) a given pose “p” to each particle.
void append(CPosePDFParticles& o)
Appends (add to the list) a set of m_particles to the existing ones, and then normalize weights.
virtual void inverse(CPosePDF& o) const
Returns a new PDF such as: NEW_PDF = (0,0,0) - THIS_PDF.
mrpt::math::TPose2D getMostLikelyParticle() const
Returns the particle with the highest weight.
virtual void bayesianFusion( const CPosePDF& p1, const CPosePDF& p2, const double minMahalanobisDistToDrop = 0 )
Bayesian fusion.
double evaluatePDF_parzen( const double x, const double y, const double phi, const double stdXY, const double stdPhi ) const
Evaluates the PDF at a given arbitrary point as reconstructed by a Parzen window.
See also:
void saveParzenPDFToTextFile( const char* fileName, const double x_min, const double x_max, const double y_min, const double y_max, const double phi, const double stepSizeXY, const double stdXY, const double stdPhi ) const
Save a text file (compatible with matlab) representing the 2D evaluation of the PDF as reconstructed by a Parzen window.
See also:
virtual std::string asString() const
Returns a human-friendly textual description of the object.
For classes with a large/complex internal state, only a summary should be returned instead of the exhaustive enumeration of all data members.
template <class OPENGL_SETOFOBJECTSPTR> void getAs3DObject(OPENGL_SETOFOBJECTSPTR& out_obj) const
Returns a 3D representation of this PDF (it doesn’t clear the current contents of out_obj, but append new OpenGL objects to that list)
Needs the mrpt-opengl library, and using mrpt::opengl::CSetOfObjects::Ptr as template argument.
By default, ellipsoids for the confidence intervals of “q=3” are drawn; for more mathematical details, see CGeneralizedEllipsoidTemplate::setQuantiles()
template <class OPENGL_SETOFOBJECTSPTR> OPENGL_SETOFOBJECTSPTR getAs3DObject() const
Returns a 3D representation of this PDF.
Needs the mrpt-opengl library, and using mrpt::opengl::CSetOfObjects::Ptr as template argument.
void clearParticles()
Free the memory of all the particles and reset the array “m_particles” to length zero
template <class STREAM> void writeParticlesToStream(STREAM& out) const
Dumps the sequence of particles and their weights to a stream (requires T implementing CSerializable).
See also:
template <class STREAM> void readParticlesFromStream(STREAM& in)
Reads the sequence of particles and their weights from a stream (requires T implementing CSerializable).
See also:
void getWeights(std::vector<double>& out_logWeights) const
Returns a vector with the sequence of the logaritmic weights of all the samples.
const CPosePDFParticles& derived() const
CRTP helper method.
CPosePDFParticles& derived()
CRTP helper method.
virtual double getW(size_t i) const
Access to i’th particle (logarithm) weight, where first one is index 0.
virtual void setW(size_t i, double w)
Modifies i’th particle (logarithm) weight, where first one is index 0.
virtual size_t particlesCount() const
Get the m_particles count.
virtual double normalizeWeights(double* out_max_log_w = nullptr)
Normalize the (logarithmic) weights, such as the maximum weight is zero.
Parameters:
out_max_log_w |
If provided, will return with the maximum log_w before normalizing, such as new_weights = old_weights - max_log_w. |
Returns:
The max/min ratio of weights (“dynamic range”)
virtual double ESS() const
Returns the normalized ESS (Estimated Sample Size), in the range [0,1].
Note that you do NOT need to normalize the weights before calling this.
virtual void performSubstitution(const std::vector<size_t>& indx)
Replaces the old particles by copies determined by the indexes in “indx”, performing an efficient copy of the necesary particles only and allowing the number of particles to change.
void prepareFastDrawSample( const bayes::CParticleFilter::TParticleFilterOptions& PF_options, TParticleProbabilityEvaluator partEvaluator = defaultEvaluator, const void* action = nullptr, const void* observation = nullptr ) const
Prepares data structures for calling fastDrawSample method next.
This method must be called once before using “fastDrawSample” (calling this more than once has no effect, but it takes time for nothing!) The behavior depends on the configuration of the PF (see CParticleFilter::TParticleFilterOptions):
DYNAMIC SAMPLE SIZE=NO : In this case this method fills out an internal array (m_fastDrawAuxiliary.alreadyDrawnIndexes) with the random indexes generated according to the selected resample scheme in TParticleFilterOptions. Those indexes are read sequentially by subsequent calls to fastDrawSample.
DYNAMIC SAMPLE SIZE=YES : Then:
If TParticleFilterOptions.resamplingMethod = prMultinomial, the internal buffers will be filled out (m_fastDrawAuxiliary.CDF, CDF_indexes & PDF) and then fastDrawSample can be called an arbitrary number of times to generate random indexes.
For the rest of resampling algorithms, an exception will be raised since they are not appropriate for a dynamic (unknown in advance) number of particles.
The function pointed by “partEvaluator” should take into account the particle filter algorithm selected in “m_PFAlgorithm”. If called without arguments (defaultEvaluator), the default behavior is to draw samples with a probability proportional to their current weights. The action and the observation are declared as “void*” for a greater flexibility. For a more detailed information see the Particle Filter tutorial. Custom supplied “partEvaluator” functions must take into account the previous particle weight, i.e. multiplying the current observation likelihood by the weights.
See also:
size_t fastDrawSample(const bayes::CParticleFilter::TParticleFilterOptions& PF_options) const
Draws a random sample from the particle filter, in such a way that each particle has a probability proportional to its weight (in the standard PF algorithm).
This method can be used to generate a variable number of m_particles when resampling: to vary the number of m_particles in the filter. See prepareFastDrawSample for more information, or the Particle Filter tutorial.
NOTES:
You MUST call “prepareFastDrawSample” ONCE before calling this method. That method must be called after modifying the particle filter (executing one step, resampling, etc…)
This method returns ONE index for the selected (“drawn”) particle, in the range [0,M-1]
You do not need to call “normalizeWeights” before calling this.
See also:
void prediction_and_update( const mrpt::obs::CActionCollection* action, const mrpt::obs::CSensoryFrame* observation, const bayes::CParticleFilter::TParticleFilterOptions& PF_options )
Performs the prediction stage of the Particle Filter.
This method simply selects the appropiate protected method according to the particle filter algorithm to run.
See also:
prediction_and_update_pfStandardProposal, prediction_and_update_pfAuxiliaryPFStandard, prediction_and_update_pfOptimalProposal, prediction_and_update_pfAuxiliaryPFOptimal
void performResampling(const bayes::CParticleFilter::TParticleFilterOptions& PF_options, size_t out_particle_count = 0)
Performs a resample of the m_particles, using the method selected in the constructor.
After computing the surviving samples, this method internally calls “performSubstitution” to actually perform the particle replacement. This method is called automatically by CParticleFilter::execute, andshould not be invoked manually normally. To just obtaining the sequence of resampled indexes from a sequence of weights, use “resample”
Parameters:
out_particle_count |
The desired number of output particles after resampling; 0 means don’t modify the current number. |
See also:
resample
bool PF_SLAM_implementation_gatherActionsCheckBothActObs( const mrpt::obs::CActionCollection* actions, const mrpt::obs::CSensoryFrame* sf )
Auxiliary method called by PF implementations: return true if we have both action & observation, otherwise, return false AND accumulate the odometry so when we have an observation we didn’t lose a thing.
On return=true, the “m_movementDrawer” member is loaded and ready to draw samples of the increment of pose since last step. This method is smart enough to accumulate CActionRobotMovement2D or CActionRobotMovement3D, whatever comes in.
static void jacobiansPoseComposition( const CPose2D& x, const CPose2D& u, mrpt::math::CMatrixDouble33& df_dx, mrpt::math::CMatrixDouble33& df_du, const bool compute_df_dx = true, const bool compute_df_du = true )
This static method computes the pose composition Jacobians, with these formulas:
df_dx = [ 1, 0, -sin(phi_x)*x_u-cos(phi_x)*y_u ] [ 0, 1, cos(phi_x)*x_u-sin(phi_x)*y_u ] [ 0, 0, 1 ] df_du = [ cos(phi_x) , -sin(phi_x) , 0 ] [ sin(phi_x) , cos(phi_x) , 0 ] [ 0 , 0 , 1 ]
static void jacobiansPoseComposition(const CPosePDFGaussian& x, const CPosePDFGaussian& u, mrpt::math::CMatrixDouble33& df_dx, mrpt::math::CMatrixDouble33& df_du)
This is an overloaded member function, provided for convenience. It differs from the above function only in what argument(s) it accepts.
static double defaultEvaluator( ] const bayes::CParticleFilter::TParticleFilterOptions& PF_options, ] const CParticleFilterCapable* obj, size_t index, ] const void* action, ] const void* observation )
The default evaluator function, which simply returns the particle weight.
The action and the observation are declared as “void*” for a greater flexibility.
See also:
static void computeResampling( CParticleFilter::TParticleResamplingAlgorithm method, const std::vector<double>& in_logWeights, std::vector<size_t>& out_indexes, size_t out_particle_count = 0 )
A static method to perform the computation of the samples resulting from resampling a given set of particles, given their logarithmic weights, and a resampling method.
It returns the sequence of indexes from the resampling. The number of output samples is the same than the input population. This generic method just computes these indexes, to actually perform a resampling in a particle filter object, call performResampling
Parameters:
out_particle_count |
The desired number of output particles after resampling; 0 means don’t modify the current number. |
See also:
static void log2linearWeights( const std::vector<double>& in_logWeights, std::vector<double>& out_linWeights )
A static method to compute the linear, normalized (the sum the unity) weights from log-weights.
See also: