Vector and matrices mathematical operations

Overview

and other utilities

// global functions

template <size_t NROWS, size_t NCOLS>
mrpt::serialization::CArchive& mrpt::math::operator >> (mrpt::serialization::CArchive& in, CMatrixFixed<float, NROWS, NCOLS>& M);

template <size_t NROWS, size_t NCOLS>
mrpt::serialization::CArchive& mrpt::math::operator >> (mrpt::serialization::CArchive& in, CMatrixFixed<double, NROWS, NCOLS>& M);

template <size_t NROWS, size_t NCOLS>
mrpt::serialization::CArchive& mrpt::math::operator << (
    mrpt::serialization::CArchive& out,
    const CMatrixFixed<float, NROWS, NCOLS>& M
    );

template <size_t NROWS, size_t NCOLS>
mrpt::serialization::CArchive& mrpt::math::operator << (
    mrpt::serialization::CArchive& out,
    const CMatrixFixed<double, NROWS, NCOLS>& M
    );

template <typename MAT>
void mrpt::math::deserializeSymmetricMatrixFrom(MAT& m, mrpt::serialization::CArchive& in);

template <typename MAT>
void mrpt::math::serializeSymmetricMatrixTo(MAT& m, mrpt::serialization::CArchive& out);

template <typename T1, typename T2>
std::vector<T1>& mrpt::math::operator *= (
    std::vector<T1>& a,
    const std::vector<T2>& b
    );

template <typename T1>
std::vector<T1>& mrpt::math::operator *= (std::vector<T1>& a, const T1 b);

template <typename T1, typename T2>
std::vector<T1> mrpt::math::operator * (
    const std::vector<T1>& a,
    const std::vector<T2>& b
    );

template <typename T1, typename T2>
std::vector<T1>& mrpt::math::operator += (
    std::vector<T1>& a,
    const std::vector<T2>& b
    );

template <typename T1>
std::vector<T1>& mrpt::math::operator += (std::vector<T1>& a, const T1 b);

template <typename T1, typename T2>
std::vector<T1> mrpt::math::operator + (
    const std::vector<T1>& a,
    const std::vector<T2>& b
    );

template <typename T1, typename T2>
std::vector<T1> mrpt::math::operator - (
    const std::vector<T1>& v1,
    const std::vector<T2>& v2
    );

template <class T>
std::ostream& mrpt::math::operator << (std::ostream& out, const std::vector<T>& d);

template <class T>
std::ostream& mrpt::math::operator << (std::ostream& out, std::vector<T>* d);

template <typename T, size_t N>
mrpt::serialization::CArchive& mrpt::math::operator << (mrpt::serialization::CArchive& ostrm, const CVectorFixed<T, N>& a);

template <typename T, size_t N>
mrpt::serialization::CArchive& mrpt::math::operator >> (mrpt::serialization::CArchive& istrm, CVectorFixed<T, N>& a);

bool mrpt::math::loadVector(std::istream& f, std::vector<int>& d);
bool mrpt::math::loadVector(std::istream& f, std::vector<double>& d);

void mrpt::math::medianFilter(
    const std::vector<double>& inV,
    std::vector<double>& outV,
    int winSize,
    int numberOfSigmas = 2
    );

template <typename T, typename VECTOR>
void mrpt::math::linspace(
    T first,
    T last,
    size_t count,
    VECTOR& out_vector
    );

template <typename T, typename VECTOR = std::vector<T>>
VECTOR mrpt::math::linspace(
    T first,
    T last,
    size_t count
    );

template <class T, T STEP>
std::vector<T> mrpt::math::sequenceStdVec(T first, size_t length);

template <class VEC1, class VEC2>
void mrpt::math::normalize(const VEC1& v, VEC2& out_v);

template <class VECTOR_OF_VECTORS, class VECTORLIKE>
void mrpt::math::extractColumnFromVectorOfVectors(
    const size_t colIndex,
    const VECTOR_OF_VECTORS& data,
    VECTORLIKE& out_column
    );

uint64_t mrpt::math::factorial64(unsigned int n);
double mrpt::math::factorial(unsigned int n);

template <typename VECTOR_T, typename At, size_t N>
VECTOR_T& mrpt::math::loadVector(
    VECTOR_T& v,
    At(&) theArray [N]
    );

template <typename T, typename At, size_t N>
std::vector<T>& mrpt::math::loadVector(
    std::vector<T>& v,
    At(&) theArray [N]
    );

template <class T>
void mrpt::math::wrapTo2PiInPlace(T& a);

template <class T>
T mrpt::math::wrapTo2Pi(T a);

template <class T>
T mrpt::math::wrapToPi(T a);

template <class T>
void mrpt::math::wrapToPiInPlace(T& a);

template <class VECTOR>
void mrpt::math::unwrap2PiSequence(VECTOR& x);

template <class T>
T mrpt::math::angDistance(T from, T to);

Global Functions

template <size_t NROWS, size_t NCOLS>
mrpt::serialization::CArchive& mrpt::math::operator >> (
    mrpt::serialization::CArchive& in,
    CMatrixFixed<float, NROWS, NCOLS>& M
    )

Read operator from a CStream.

The format is compatible with that of CMatrixF & CMatrixD

template <size_t NROWS, size_t NCOLS>
mrpt::serialization::CArchive& mrpt::math::operator >> (
    mrpt::serialization::CArchive& in,
    CMatrixFixed<double, NROWS, NCOLS>& M
    )

Read operator from a CStream.

The format is compatible with that of CMatrixF & CMatrixD

template <size_t NROWS, size_t NCOLS>
mrpt::serialization::CArchive& mrpt::math::operator << (
    mrpt::serialization::CArchive& out,
    const CMatrixFixed<float, NROWS, NCOLS>& M
    )

Write operator for writing into a CStream.

The format is compatible with that of CMatrixF & CMatrixD

template <size_t NROWS, size_t NCOLS>
mrpt::serialization::CArchive& mrpt::math::operator << (
    mrpt::serialization::CArchive& out,
    const CMatrixFixed<double, NROWS, NCOLS>& M
    )

Write operator for writing into a CStream.

The format is compatible with that of CMatrixF & CMatrixD

template <typename MAT>
void mrpt::math::deserializeSymmetricMatrixFrom(
    MAT& m,
    mrpt::serialization::CArchive& in
    )

Binary serialization of symmetric matrices, saving the space of duplicated values.

See also:

serializeSymmetricMatrixTo()

template <typename MAT>
void mrpt::math::serializeSymmetricMatrixTo(
    MAT& m,
    mrpt::serialization::CArchive& out
    )

Binary serialization of symmetric matrices, saving the space of duplicated values.

See also:

deserializeSymmetricMatrixFrom()

template <typename T1, typename T2>
std::vector<T1>& mrpt::math::operator *= (
    std::vector<T1>& a,
    const std::vector<T2>& b
    )

a*=b (element-wise multiplication)

template <typename T1>
std::vector<T1>& mrpt::math::operator *= (
    std::vector<T1>& a,
    const T1 b
    )

a*=k (multiplication by a constant)

template <typename T1, typename T2>
std::vector<T1> mrpt::math::operator * (
    const std::vector<T1>& a,
    const std::vector<T2>& b
    )

a*b (element-wise multiplication)

template <typename T1, typename T2>
std::vector<T1>& mrpt::math::operator += (
    std::vector<T1>& a,
    const std::vector<T2>& b
    )

a+=b (element-wise sum)

template <typename T1>
std::vector<T1>& mrpt::math::operator += (
    std::vector<T1>& a,
    const T1 b
    )

a+=b (sum a constant)

template <typename T1, typename T2>
std::vector<T1> mrpt::math::operator + (
    const std::vector<T1>& a,
    const std::vector<T2>& b
    )

a+b (element-wise sum)

template <class T>
std::ostream& mrpt::math::operator << (
    std::ostream& out,
    const std::vector<T>& d
    )

A template function for printing out the contents of a std::vector variable.

template <class T>
std::ostream& mrpt::math::operator << (
    std::ostream& out,
    std::vector<T>* d
    )

A template function for printing out the contents of a std::vector variable.

template <typename T, size_t N>
mrpt::serialization::CArchive& mrpt::math::operator << (
    mrpt::serialization::CArchive& ostrm,
    const CVectorFixed<T, N>& a
    )

Binary dump of a CVectorFixed<T,N> to a stream.

template <typename T, size_t N>
mrpt::serialization::CArchive& mrpt::math::operator >> (mrpt::serialization::CArchive& istrm, CVectorFixed<T, N>& a)

Binary read of a CVectorFixed<T,N> from a stream.

bool mrpt::math::loadVector(std::istream& f, std::vector<int>& d)

Loads one row of a text file as a numerical std::vector.

Returns:

false on EOF or invalid format. The body of the function is implemented in MATH.cpp

bool mrpt::math::loadVector(std::istream& f, std::vector<double>& d)

Loads one row of a text file as a numerical std::vector.

Returns:

false on EOF or invalid format. The body of the function is implemented in MATH.cpp

template <typename T, typename VECTOR>
void mrpt::math::linspace(
    T first,
    T last,
    size_t count,
    VECTOR& out_vector
    )

Generates an equidistant sequence of numbers given the first one, the last one and the desired number of points.

See also:

sequence

template <typename T, typename VECTOR = std::vector<T>>
VECTOR mrpt::math::linspace(
    T first,
    T last,
    size_t count
    )

Generates an equidistant sequence of numbers given the first one, the last one and the desired number of points.

[New in MRPT 2.1.4]

See also:

sequence

template <class T, T STEP>
std::vector<T> mrpt::math::sequenceStdVec(
    T first,
    size_t length
    )

Generates a sequence of values [first,first+STEP,first+2*STEP,…].

See also:

linspace, sequence

template <class VEC1, class VEC2>
void mrpt::math::normalize(
    const VEC1& v,
    VEC2& out_v
    )

Normalize a vector, such as its norm is the unity.

If the vector has a null norm, the output is a null vector.

template <class VECTOR_OF_VECTORS, class VECTORLIKE>
void mrpt::math::extractColumnFromVectorOfVectors(
    const size_t colIndex,
    const VECTOR_OF_VECTORS& data,
    VECTORLIKE& out_column
    )

Extract a column from a vector of vectors, and store it in another vector.

  • Input data can be: std::vector<mrpt::math::CVectorDouble>, std::deque<std::list<double> >, std::list<CVectorFixedDouble<5> >, etc. etc.

  • Output is the sequence: data[0][idx],data[1][idx],data[2][idx], etc..

For the sake of generality, this function does NOT check the limits in the number of column, unless it’s implemented in the [] operator of each of the “rows”.

uint64_t mrpt::math::factorial64(unsigned int n)

Computes the factorial of an integer number and returns it as a 64-bit integer number.

double mrpt::math::factorial(unsigned int n)

Computes the factorial of an integer number and returns it as a double value (internally it uses logarithms for avoiding overflow).

template <typename VECTOR_T, typename At, size_t N>
VECTOR_T& mrpt::math::loadVector(
    VECTOR_T& v,
    At(&) theArray [N]
    )

Assignment operator for initializing a std::vector from a C array (The vector will be automatically set to the correct size).

   CVectorDouble  v;
const double numbers[] = { 1,2,3,5,6,7,8,9,10 };
loadVector( v, numbers );

This operator performs the appropriate type castings, if required.

template <typename T, typename At, size_t N>
std::vector<T>& mrpt::math::loadVector(
    std::vector<T>& v,
    At(&) theArray [N]
    )

This is an overloaded member function, provided for convenience. It differs from the above function only in what argument(s) it accepts.

template <class T>
void mrpt::math::wrapTo2PiInPlace(T& a)

Modifies the given angle to translate it into the [0,2pi[ range.

Take care of not instancing this template for integer numbers, since it only works for float, double and long double.

See also:

wrapToPi, wrapTo2Pi, unwrap2PiSequence

template <class T>
T mrpt::math::wrapTo2Pi(T a)

Modifies the given angle to translate it into the [0,2pi[ range.

Take care of not instancing this template for integer numbers, since it only works for float, double and long double.

See also:

wrapToPi, wrapTo2Pi, unwrap2PiSequence

template <class T>
T mrpt::math::wrapToPi(T a)

Modifies the given angle to translate it into the ]-pi,pi] range.

Take care of not instancing this template for integer numbers, since it only works for float, double and long double.

See also:

wrapTo2Pi, wrapToPiInPlace, unwrap2PiSequence

template <class T>
void mrpt::math::wrapToPiInPlace(T& a)

Modifies the given angle to translate it into the ]-pi,pi] range.

Take care of not instancing this template for integer numbers, since it only works for float, double and long double.

See also:

wrapToPi, wrapTo2Pi, unwrap2PiSequence

template <class VECTOR>
void mrpt::math::unwrap2PiSequence(VECTOR& x)

Modify a sequence of angle values such as no consecutive values have a jump larger than PI in absolute value.

See also:

wrapToPi

template <class T>
T mrpt::math::angDistance(T from, T to)

Computes the shortest angular increment (or distance) between two planar orientations, such that it is constrained to [-pi,pi] and is correct for any combination of angles (e.g.

near +-pi) Examples: angDistance(0,pi) -> +pi; angDistance(pi,0) -> -pi; angDistance(-3.1,3.1) -> -0.08; angDistance(3.1,-3.1) -> +0.08; Take care of not instancing this template for integer numbers, since it only works for float, double and long double.

See also:

wrapToPi, wrapTo2Pi