Go to the documentation of this file.
71 size_t p_size,
size_t p_pick, std::vector<size_t>& p_ind);
76 std::set<size_t> p_set,
size_t p_pick, std::vector<size_t>& p_ind);
79 template <
typename TModelFit>
81 const TModelFit& p_state,
size_t p_kernelSize,
82 const typename TModelFit::Real& p_fitnessThreshold,
83 typename TModelFit::Model& p_bestModel, std::vector<size_t>& p_inliers);
86 template <
typename TModelFit>
89 typename TModelFit::Model
model;
101 template <
typename TModelFit>
103 const TModelFit& p_state,
size_t p_kernelSize,
104 const typename TModelFit::Real& p_fitnessThreshold,
105 size_t p_populationSize,
size_t p_maxIteration,
106 typename TModelFit::Model& p_bestModel, std::vector<size_t>& p_inliers);
void pickRandomIndex(size_t p_size, size_t p_pick, std::vector< size_t > &p_ind)
Select random (unique) indices from the 0..p_size sequence.
This is the global namespace for all Mobile Robot Programming Toolkit (MRPT) libraries.
Model search implementations: RANSAC and genetic algorithm.
std::vector< size_t > inliers
std::vector< size_t > sample
bool geneticSingleModel(const TModelFit &p_state, size_t p_kernelSize, const typename TModelFit::Real &p_fitnessThreshold, size_t p_populationSize, size_t p_maxIteration, typename TModelFit::Model &p_bestModel, std::vector< size_t > &p_inliers)
Run a generic programming version of ransac searching for a single model.
static bool compare(const TSpecies *p_a, const TSpecies *p_b)
bool ransacSingleModel(const TModelFit &p_state, size_t p_kernelSize, const typename TModelFit::Real &p_fitnessThreshold, typename TModelFit::Model &p_bestModel, std::vector< size_t > &p_inliers)
Run the ransac algorithm searching for a single model.
Page generated by Doxygen 1.8.17 for MRPT 1.9.9 Git: ad3a9d8ae Tue May 1 23:10:22 2018 -0700 at miƩ 12 jul 2023 10:03:34 CEST | |