Go to the documentation of this file.
9 #ifndef data_association_H
10 #define data_association_H
168 const double chi2quantile = 0.99,
const bool DAT_ASOC_USE_KDTREE =
true,
169 const std::vector<prediction_index_t>& predictions_IDs =
170 std::vector<prediction_index_t>(),
172 const double log_ML_compat_test_threshold = 0.0);
219 const double chi2quantile = 0.99,
const bool DAT_ASOC_USE_KDTREE =
true,
220 const std::vector<prediction_index_t>& predictions_IDs =
221 std::vector<prediction_index_t>(),
223 const double log_ML_compat_test_threshold = 0.0);
239 using namespace
mrpt::slam;
@ metricMaha
Mahalanobis distance.
void setSize(size_t row, size_t col, bool zeroNewElements=false)
Changes the size of matrix, maintaining the previous contents.
TDataAssociationMethod
Different algorithms for data association, used in mrpt::slam::data_association.
#define MRPT_ENUM_TYPE_END()
The results from mrpt::slam::data_association.
void data_association_independent_predictions(const mrpt::math::CMatrixDouble &Z_observations_mean, const mrpt::math::CMatrixDouble &Y_predictions_mean, const mrpt::math::CMatrixDouble &Y_predictions_cov, TDataAssociationResults &results, const TDataAssociationMethod method=assocJCBB, const TDataAssociationMetric metric=metricMaha, const double chi2quantile=0.99, const bool DAT_ASOC_USE_KDTREE=true, const std::vector< prediction_index_t > &predictions_IDs=std::vector< prediction_index_t >(), const TDataAssociationMetric compatibilityTestMetric=metricMaha, const double log_ML_compat_test_threshold=0.0)
Computes the data-association between the prediction of a set of landmarks and their observations,...
Declares a matrix of booleans (non serializable).
@ assocJCBB
JCBB: Joint Compatibility Branch & Bound [Neira, Tardos 2001].
size_t prediction_index_t
Used in mrpt::slam::TDataAssociationResults.
TDataAssociationResults()
TDataAssociationMetric
Different metrics for data association, used in mrpt::slam::data_association For a comparison of both...
This is the global namespace for all Mobile Robot Programming Toolkit (MRPT) libraries.
#define MRPT_ENUM_TYPE_BEGIN(_ENUM_TYPE_WITH_NS)
void data_association_full_covariance(const mrpt::math::CMatrixDouble &Z_observations_mean, const mrpt::math::CMatrixDouble &Y_predictions_mean, const mrpt::math::CMatrixDouble &Y_predictions_cov, TDataAssociationResults &results, const TDataAssociationMethod method=assocJCBB, const TDataAssociationMetric metric=metricMaha, const double chi2quantile=0.99, const bool DAT_ASOC_USE_KDTREE=true, const std::vector< prediction_index_t > &predictions_IDs=std::vector< prediction_index_t >(), const TDataAssociationMetric compatibilityTestMetric=metricMaha, const double log_ML_compat_test_threshold=0.0)
Computes the data-association between the prediction of a set of landmarks and their observations,...
map< string, CVectorDouble > results
double distance
The Joint Mahalanobis distance or matching likelihood of the best associations found.
std::vector< uint32_t > indiv_compatibility_counts
The sum of each column of indiv_compatibility, that is, the number of compatible pairings for each ob...
std::map< observation_index_t, prediction_index_t > associations
For each observation (with row index IDX_obs in the input "Z_observations"), its association in the p...
@ assocNN
Nearest-neighbor.
size_t nNodesExploredInJCBB
Only for the JCBB method,the number of recursive calls expent in the algorithm.
size_t observation_index_t
Used in mrpt::slam::TDataAssociationResults.
@ metricML
Matching likelihood (See TDataAssociationMetric for a paper explaining this metric)
mrpt::math::CMatrixDouble indiv_distances
Individual mahalanobis distances (or matching likelihood, depending on the selected metric) between p...
mrpt::math::CMatrixBool indiv_compatibility
The result of a chi2 test for compatibility using mahalanobis distance - Indices are like in "indiv_d...
Page generated by Doxygen 1.8.17 for MRPT 1.9.9 Git: ad3a9d8ae Tue May 1 23:10:22 2018 -0700 at miƩ 12 jul 2023 10:03:34 CEST | |