Main MRPT website > C++ reference for MRPT 1.9.9
CPoint2DPDF.h
Go to the documentation of this file.
1 /* +------------------------------------------------------------------------+
2  | Mobile Robot Programming Toolkit (MRPT) |
3  | http://www.mrpt.org/ |
4  | |
5  | Copyright (c) 2005-2017, Individual contributors, see AUTHORS file |
6  | See: http://www.mrpt.org/Authors - All rights reserved. |
7  | Released under BSD License. See details in http://www.mrpt.org/License |
8  +------------------------------------------------------------------------+ */
9 #ifndef CPoint2DPDF_H
10 #define CPoint2DPDF_H
11 
14 #include <mrpt/poses/CPoint2D.h>
15 
16 namespace mrpt
17 {
18 namespace poses
19 {
20 /** Declares a class that represents a Probability Distribution function (PDF)
21  * of a 2D point (x,y).
22  * This class is just the base class for unifying many diferent
23  * ways this PDF can be implemented.
24  *
25  * For convenience, a pose composition is also defined for any
26  * PDF derived class, changeCoordinatesReference, in the form of a method
27  * rather than an operator.
28  *
29  * For a similar class for 6D poses (a 3D point with attitude), see CPose3DPDF
30  *
31  * See also the tutorial on <a
32  * href="http://www.mrpt.org/Probability_Density_Distributions_Over_Spatial_Representations"
33  * >probabilistic spatial representations in the MRPT</a>.
34  * \ingroup poses_pdf_grp
35  * \sa CPoint2D, CPointPDF
36  */
39 {
41 
42  public:
43  /** Copy operator, translating if necesary (for example, between particles
44  * and gaussian representations)
45  */
46  virtual void copyFrom(const CPoint2DPDF& o) = 0;
47 
48  /** Bayesian fusion of two point distributions (product of two
49  * distributions->new distribution), then save the result in this object
50  * (WARNING: See implementing classes to see classes that can and cannot be
51  * mixtured!)
52  * \param p1 The first distribution to fuse
53  * \param p2 The second distribution to fuse
54  * \param minMahalanobisDistToDrop If set to different of 0, the result of
55  * very separate Gaussian modes (that will result in negligible components)
56  * in SOGs will be dropped to reduce the number of modes in the output.
57  */
58  virtual void bayesianFusion(
59  const CPoint2DPDF& p1, const CPoint2DPDF& p2,
60  const double& minMahalanobisDistToDrop = 0) = 0;
61 
62  enum
63  {
65  };
66  static inline bool is_3D() { return is_3D_val != 0; }
67  enum
68  {
70  };
71  static inline bool is_PDF() { return is_PDF_val != 0; }
72 }; // End of class def.
73 
74 } // End of namespace
75 } // End of namespace
76 
77 #endif
The virtual base class which provides a unified interface for all persistent objects in MRPT...
Definition: CSerializable.h:44
static bool is_PDF()
Definition: CPoint2DPDF.h:71
#define DEFINE_VIRTUAL_SERIALIZABLE(class_name)
This declaration must be inserted in virtual CSerializable classes definition:
Declares a class that represents a Probability Distribution function (PDF) of a 2D point (x...
Definition: CPoint2DPDF.h:37
virtual void bayesianFusion(const CPoint2DPDF &p1, const CPoint2DPDF &p2, const double &minMahalanobisDistToDrop=0)=0
Bayesian fusion of two point distributions (product of two distributions->new distribution), then save the result in this object (WARNING: See implementing classes to see classes that can and cannot be mixtured!)
This is the global namespace for all Mobile Robot Programming Toolkit (MRPT) libraries.
A generic template for probability density distributions (PDFs).
virtual void copyFrom(const CPoint2DPDF &o)=0
Copy operator, translating if necesary (for example, between particles and gaussian representations) ...



Page generated by Doxygen 1.8.14 for MRPT 1.9.9 Git: ae4571287 Thu Nov 23 00:06:53 2017 +0100 at dom oct 27 23:51:55 CET 2019