Main MRPT website > C++ reference for MRPT 1.5.9
Classes | Namespaces | Enumerations | Functions
CKalmanFilterCapable.h File Reference
#include <mrpt/math/CMatrixFixedNumeric.h>
#include <mrpt/math/CMatrixTemplateNumeric.h>
#include <mrpt/math/CArrayNumeric.h>
#include <mrpt/math/num_jacobian.h>
#include <mrpt/math/utils.h>
#include <mrpt/utils/CConfigFileBase.h>
#include <mrpt/utils/CTimeLogger.h>
#include <mrpt/utils/aligned_containers.h>
#include <mrpt/utils/CLoadableOptions.h>
#include <mrpt/utils/stl_containers_utils.h>
#include <mrpt/utils/COutputLogger.h>
#include <mrpt/utils/CTicTac.h>
#include <mrpt/utils/CFileOutputStream.h>
#include <mrpt/utils/TEnumType.h>
#include <mrpt/system/vector_loadsave.h>
#include "CKalmanFilterCapable_impl.h"
Include dependency graph for CKalmanFilterCapable.h:
This graph shows which files directly or indirectly include this file:

Go to the source code of this file.

Classes

class  mrpt::bayes::CKalmanFilterCapable< VEH_SIZE, OBS_SIZE, FEAT_SIZE, ACT_SIZE, KFTYPE >
 Virtual base for Kalman Filter (EKF,IEKF,UKF) implementations. More...
 
struct  mrpt::bayes::TKF_options
 Generic options for the Kalman Filter algorithm in itself. More...
 
class  mrpt::bayes::CKalmanFilterCapable< VEH_SIZE, OBS_SIZE, FEAT_SIZE, ACT_SIZE, KFTYPE >
 Virtual base for Kalman Filter (EKF,IEKF,UKF) implementations. More...
 
struct  mrpt::utils::TEnumTypeFiller< bayes::TKFMethod >
 

Namespaces

 mrpt
 This is the global namespace for all Mobile Robot Programming Toolkit (MRPT) libraries.
 
 mrpt::bayes
 The namespace for Bayesian filtering algorithm: different particle filters and Kalman filter algorithms.
 
 mrpt::bayes::detail
 Auxiliary functions, for internal usage of MRPT classes.
 
 mrpt::utils
 Classes for serialization, sockets, ini-file manipulation, streams, list of properties-values, timewatch, extensions to STL.
 

Enumerations

enum  mrpt::bayes::TKFMethod { mrpt::bayes::kfEKFNaive = 0, mrpt::bayes::kfEKFAlaDavison, mrpt::bayes::kfIKFFull, mrpt::bayes::kfIKF }
 The Kalman Filter algorithm to employ in bayes::CKalmanFilterCapable For further details on each algorithm see the tutorial: http://www.mrpt.org/Kalman_Filters. More...
 

Functions

template<size_t VEH_SIZE, size_t OBS_SIZE, size_t FEAT_SIZE, size_t ACT_SIZE, typename KFTYPE >
size_t mrpt::bayes::detail::getNumberOfLandmarksInMap (const CKalmanFilterCapable< VEH_SIZE, OBS_SIZE, FEAT_SIZE, ACT_SIZE, KFTYPE > &obj)
 
template<size_t VEH_SIZE, size_t OBS_SIZE, size_t ACT_SIZE, typename KFTYPE >
size_t mrpt::bayes::detail::getNumberOfLandmarksInMap (const CKalmanFilterCapable< VEH_SIZE, OBS_SIZE, 0, ACT_SIZE, KFTYPE > &obj)
 
template<size_t VEH_SIZE, size_t OBS_SIZE, size_t FEAT_SIZE, size_t ACT_SIZE, typename KFTYPE >
bool mrpt::bayes::detail::isMapEmpty (const CKalmanFilterCapable< VEH_SIZE, OBS_SIZE, FEAT_SIZE, ACT_SIZE, KFTYPE > &obj)
 
template<size_t VEH_SIZE, size_t OBS_SIZE, size_t ACT_SIZE, typename KFTYPE >
bool mrpt::bayes::detail::isMapEmpty (const CKalmanFilterCapable< VEH_SIZE, OBS_SIZE, 0, ACT_SIZE, KFTYPE > &obj)
 
template<size_t VEH_SIZE, size_t OBS_SIZE, size_t FEAT_SIZE, size_t ACT_SIZE, typename KFTYPE >
void mrpt::bayes::detail::addNewLandmarks (CKalmanFilterCapable< VEH_SIZE, OBS_SIZE, FEAT_SIZE, ACT_SIZE, KFTYPE > &obj, const typename CKalmanFilterCapable< VEH_SIZE, OBS_SIZE, FEAT_SIZE, ACT_SIZE, KFTYPE >::vector_KFArray_OBS &Z, const vector_int &data_association, const typename CKalmanFilterCapable< VEH_SIZE, OBS_SIZE, FEAT_SIZE, ACT_SIZE, KFTYPE >::KFMatrix_OxO &R)
 
template<size_t VEH_SIZE, size_t OBS_SIZE, size_t ACT_SIZE, typename KFTYPE >
void mrpt::bayes::detail::addNewLandmarks (CKalmanFilterCapable< VEH_SIZE, OBS_SIZE, 0, ACT_SIZE, KFTYPE > &obj, const typename CKalmanFilterCapable< VEH_SIZE, OBS_SIZE, 0, ACT_SIZE, KFTYPE >::vector_KFArray_OBS &Z, const vector_int &data_association, const typename CKalmanFilterCapable< VEH_SIZE, OBS_SIZE, 0, ACT_SIZE, KFTYPE >::KFMatrix_OxO &R)
 



Page generated by Doxygen 1.8.14 for MRPT 1.5.9 Git: 690a4699f Wed Apr 15 19:29:53 2020 +0200 at miƩ abr 15 19:30:12 CEST 2020