class mrpt::poses::CPose3DPDFGaussianInf
Declares a class that represents a Probability Density function (PDF) of a 3D pose \(p(\mathbf{x}) = [x ~ y ~ z ~ yaw ~ pitch ~ roll]^t\) as a Gaussian described by its mean and its inverse covariance matrix.
This class implements that PDF using a mono-modal Gaussian distribution in “information” form (inverse covariance matrix).
Uncertainty of pose composition operations (\(y = x \oplus u\)) is implemented in the method “CPose3DPDFGaussianInf::operator+=”.
Read also: “A tutorial on SE(3) transformation parameterizations and on-manifold optimization”, in [4]
See also:
CPose3D, CPose3DPDF, CPose3DPDFParticles, CPose3DPDFGaussian
#include <mrpt/poses/CPose3DPDFGaussianInf.h> class CPose3DPDFGaussianInf: public mrpt::poses::CPose3DPDF { public: // fields CPose3D mean; mrpt::math::CMatrixDouble66 cov_inv; // construction CPose3DPDFGaussianInf(); CPose3DPDFGaussianInf(const CPose3D& init_Mean); CPose3DPDFGaussianInf(TConstructorFlags_Poses constructor_dummy_param); CPose3DPDFGaussianInf(const CPose3D& init_Mean, const mrpt::math::CMatrixDouble66& init_CovInv); CPose3DPDFGaussianInf(const CPose3DQuatPDFGaussian& o); // methods const CPose3D& getPoseMean() const; CPose3D& getPoseMean(); void getMean(CPose3D& mean_pose) const; virtual bool isInfType() const; virtual std::tuple<cov_mat_t, type_value> getCovarianceAndMean() const; void getInformationMatrix(mrpt::math::CMatrixDouble66& inf) const; virtual void copyFrom(const CPose3DPDF& o); void copyFrom(const CPosePDF& o); void copyFrom(const CPose3DQuatPDFGaussian& o); virtual bool saveToTextFile(const std::string& file) const; virtual void changeCoordinatesReference(const CPose3D& newReferenceBase); void drawSingleSample(CPose3D& outPart) const; virtual void drawManySamples(size_t N, std::vector<mrpt::math::CVectorDouble>& outSamples) const; virtual void bayesianFusion(const CPose3DPDF& p1, const CPose3DPDF& p2); virtual void inverse(CPose3DPDF& o) const; CPose3DPDFGaussianInf operator - () const; void operator += (const CPose3D& Ap); void operator += (const CPose3DPDFGaussianInf& Ap); void operator -= (const CPose3DPDFGaussianInf& Ap); double evaluatePDF(const CPose3D& x) const; double evaluateNormalizedPDF(const CPose3D& x) const; void getInvCovSubmatrix2D(mrpt::math::CMatrixDouble& out_cov) const; double mahalanobisDistanceTo(const CPose3DPDFGaussianInf& theOther); };
Inherited Members
public: // typedefs typedef CProbabilityDensityFunction<TDATA, STATE_LEN> self_t; // methods virtual void copyFrom(const CPose3DPDF& o) = 0; virtual void changeCoordinatesReference(const CPose3D& newReferenceBase) = 0; virtual void bayesianFusion(const CPose3DPDF& p1, const CPose3DPDF& p2) = 0; virtual void inverse(CPose3DPDF& o) const = 0;
Fields
CPose3D mean
The mean value.
mrpt::math::CMatrixDouble66 cov_inv
The inverse of the 6x6 covariance matrix.
Construction
CPose3DPDFGaussianInf()
Default constructor - mean: all zeros, inverse covariance=all zeros -> so be careful!
CPose3DPDFGaussianInf(const CPose3D& init_Mean)
Constructor with a mean value, inverse covariance=all zeros -> so be careful!
CPose3DPDFGaussianInf(TConstructorFlags_Poses constructor_dummy_param)
Uninitialized constructor: leave all fields uninitialized - Call with UNINITIALIZED_POSE as argument.
CPose3DPDFGaussianInf(const CPose3D& init_Mean, const mrpt::math::CMatrixDouble66& init_CovInv)
Constructor with mean and inv cov.
CPose3DPDFGaussianInf(const CPose3DQuatPDFGaussian& o)
Constructor from a 6D pose PDF described as a Quaternion.
Methods
virtual bool isInfType() const
Returns whether the class instance holds the uncertainty in covariance or information form.
By default this is going to be covariance form. *Inf classes (e.g. CPosePDFGaussianInf) store it in information form.
See also:
mrpt::traits::is_inf_type
virtual std::tuple<cov_mat_t, type_value> getCovarianceAndMean() const
Returns an estimate of the pose covariance matrix (STATE_LENxSTATE_LEN cov matrix) and the mean, both at once.
See also:
void getInformationMatrix(mrpt::math::CMatrixDouble66& inf) const
Returns the information (inverse covariance) matrix (a STATE_LEN x STATE_LEN matrix)
See also:
virtual void copyFrom(const CPose3DPDF& o)
Copy operator, translating if necesary (for example, between particles and gaussian representations)
void copyFrom(const CPosePDF& o)
Copy operator, translating if necesary (for example, between particles and gaussian representations)
void copyFrom(const CPose3DQuatPDFGaussian& o)
Copy from a 6D pose PDF described as a Quaternion.
virtual bool saveToTextFile(const std::string& file) const
Save the PDF to a text file, containing the 3D pose in the first line, then the covariance matrix in next 3 lines.
virtual void changeCoordinatesReference(const CPose3D& newReferenceBase)
this = p (+) this.
This can be used to convert a PDF from local coordinates to global, providing the point (newReferenceBase) from which “to project” the current pdf. Result PDF substituted the currently stored one in the object.
void drawSingleSample(CPose3D& outPart) const
Draws a single sample from the distribution.
virtual void drawManySamples(size_t N, std::vector<mrpt::math::CVectorDouble>& outSamples) const
Draws a number of samples from the distribution, and saves as a list of 1x6 vectors, where each row contains a (x,y,phi) datum.
virtual void bayesianFusion(const CPose3DPDF& p1, const CPose3DPDF& p2)
Bayesian fusion of two points gauss.
distributions, then save the result in this object. The process is as follows:
(x1,S1): Mean and variance of the p1 distribution.
(x2,S2): Mean and variance of the p2 distribution.
(x,S): Mean and variance of the resulting distribution.
\(S = (S_1^{-1} + S_2^{-1})^{-1}\) \(x = S ( S_1^{-1} x_1 + S_2^{-1} x_2 )\)
virtual void inverse(CPose3DPDF& o) const
Returns a new PDF such as: NEW_PDF = (0,0,0) - THIS_PDF.
CPose3DPDFGaussianInf operator - () const
Unary - operator, returns the PDF of the inverse pose.
void operator += (const CPose3D& Ap)
Makes: thisPDF = thisPDF + Ap, where “+” is pose composition (both the mean, and the covariance matrix are updated)
void operator += (const CPose3DPDFGaussianInf& Ap)
Makes: thisPDF = thisPDF + Ap, where “+” is pose composition (both the mean, and the covariance matrix are updated)
void operator -= (const CPose3DPDFGaussianInf& Ap)
Makes: thisPDF = thisPDF - Ap, where “-” is pose inverse composition (both the mean, and the covariance matrix are updated)
double evaluatePDF(const CPose3D& x) const
Evaluates the PDF at a given point.
double evaluateNormalizedPDF(const CPose3D& x) const
Evaluates the ratio PDF(x) / PDF(MEAN), that is, the normalized PDF in the range [0,1].
void getInvCovSubmatrix2D(mrpt::math::CMatrixDouble& out_cov) const
Returns a 3x3 matrix with submatrix of the inverse covariance for the variables (x,y,yaw) only.
double mahalanobisDistanceTo(const CPose3DPDFGaussianInf& theOther)
Computes the Mahalanobis distance between the centers of two Gaussians.
The variables with a variance exactly equal to 0 are not taken into account in the process, but “infinity” is returned if the corresponding elements are not exactly equal.