class mrpt::slam::CRangeBearingKFSLAM
An implementation of EKF-based SLAM with range-bearing sensors, odometry, a SE(3) robot pose, and 3D landmarks.
The main method is processActionObservation() which processes pairs of actions/observations.
The state vector comprises: 3D robot position, a quaternion for its attitude, and the 3D landmarks in the map.
The front-end application kf-slam is based on this class.
For the theory behind this implementation, see the technical report: [2]
See also:
An implementation for 2D and SE(2) is in CRangeBearingKFSLAM2D
#include <mrpt/slam/CRangeBearingKFSLAM.h> class CRangeBearingKFSLAM: public mrpt::bayes::CKalmanFilterCapable { public: // typedefs typedef mrpt::math::TPoint3D landmark_point_t; // structs struct TDataAssocInfo; struct TOptions; // fields mrpt::slam::CRangeBearingKFSLAM::TOptions options; // construction CRangeBearingKFSLAM(); // methods void reset(); void processActionObservation(mrpt::obs::CActionCollection::Ptr& action, mrpt::obs::CSensoryFrame::Ptr& SF); void getCurrentState( mrpt::poses::CPose3DQuatPDFGaussian& out_robotPose, std::vector<mrpt::math::TPoint3D>& out_landmarksPositions, std::map<unsigned int, mrpt::maps::CLandmark::TLandmarkID>& out_landmarkIDs, mrpt::math::CVectorDouble& out_fullState, mrpt::math::CMatrixDouble& out_fullCovariance ) const; void getCurrentState( mrpt::poses::CPose3DPDFGaussian& out_robotPose, std::vector<mrpt::math::TPoint3D>& out_landmarksPositions, std::map<unsigned int, mrpt::maps::CLandmark::TLandmarkID>& out_landmarkIDs, mrpt::math::CVectorDouble& out_fullState, mrpt::math::CMatrixDouble& out_fullCovariance ) const; void getCurrentRobotPose(mrpt::poses::CPose3DQuatPDFGaussian& out_robotPose) const; mrpt::poses::CPose3DQuat getCurrentRobotPoseMean() const; void getCurrentRobotPose(mrpt::poses::CPose3DPDFGaussian& out_robotPose) const; void getAs3DObject(mrpt::opengl::CSetOfObjects::Ptr& outObj) const; void loadOptions(const mrpt::config::CConfigFileBase& ini); const TDataAssocInfo& getLastDataAssociation() const; void getLastPartition(std::vector<std::vector<uint32_t>>& parts); void getLastPartitionLandmarks(std::vector<std::vector<uint32_t>>& landmarksMembership) const; void getLastPartitionLandmarksAsIfFixedSubmaps(size_t K, std::vector<std::vector<uint32_t>>& landmarksMembership); double computeOffDiagonalBlocksApproximationError(const std::vector<std::vector<uint32_t>>& landmarksMembership) const; void reconsiderPartitionsNow(); CIncrementalMapPartitioner::TOptions* mapPartitionOptions(); void saveMapAndPath2DRepresentationAsMATLABFile( const std::string& fil, float stdCount = 3.0f, const std::string& styleLandmarks = std::string("b"), const std::string& stylePath = std::string("r"), const std::string& styleRobot = std::string("r") ) const; };
Inherited Members
public: // typedefs typedef KFTYPE kftype; typedef CKalmanFilterCapable<VEH_SIZE, OBS_SIZE, FEAT_SIZE, ACT_SIZE, KFTYPE> KFCLASS; // structs struct TMsg; // fields TKF_options KF_options; // methods virtual void OnInverseObservationModel(] const KFArray_OBS& in_z, ] KFArray_FEAT& out_yn, ] KFMatrix_FxV& out_dyn_dxv, ] KFMatrix_FxO& out_dyn_dhn) const; virtual void OnInverseObservationModel( const KFArray_OBS& in_z, KFArray_FEAT& out_yn, KFMatrix_FxV& out_dyn_dxv, KFMatrix_FxO& out_dyn_dhn, ] KFMatrix_FxF& out_dyn_dhn_R_dyn_dhnT, bool& out_use_dyn_dhn_jacobian ) const; virtual void OnNewLandmarkAddedToMap(] const size_t in_obsIdx, ] const size_t in_idxNewFeat); virtual void OnNormalizeStateVector(); virtual void OnPostIteration(); void getLandmarkMean(size_t idx, KFArray_FEAT& feat) const; void getLandmarkCov(size_t idx, KFMatrix_FxF& feat_cov) const;
Typedefs
typedef mrpt::math::TPoint3D landmark_point_t
Either mrpt::math::TPoint2D or mrpt::math::TPoint3D.
Construction
CRangeBearingKFSLAM()
Constructor.
Methods
void reset()
Reset the state of the SLAM filter: The map is emptied and the robot put back to (0,0,0).
void processActionObservation(mrpt::obs::CActionCollection::Ptr& action, mrpt::obs::CSensoryFrame::Ptr& SF)
Process one new action and observations to update the map and robot pose estimate.
See the description of the class at the top of this page.
Parameters:
action |
May contain odometry |
SF |
The set of observations, must contain at least one CObservationBearingRange |
void getCurrentState( mrpt::poses::CPose3DQuatPDFGaussian& out_robotPose, std::vector<mrpt::math::TPoint3D>& out_landmarksPositions, std::map<unsigned int, mrpt::maps::CLandmark::TLandmarkID>& out_landmarkIDs, mrpt::math::CVectorDouble& out_fullState, mrpt::math::CMatrixDouble& out_fullCovariance ) const
Returns the complete mean and cov.
Parameters:
out_robotPose |
The mean and the 7x7 covariance matrix of the robot 6D pose |
out_landmarksPositions |
One entry for each of the M landmark positions (3D). |
out_landmarkIDs |
Each element[index] (for indices of out_landmarksPositions) gives the corresponding landmark ID. |
out_fullState |
The complete state vector (7+3M). |
out_fullCovariance |
The full (7+3M)x(7+3M) covariance matrix of the filter. |
See also:
void getCurrentState( mrpt::poses::CPose3DPDFGaussian& out_robotPose, std::vector<mrpt::math::TPoint3D>& out_landmarksPositions, std::map<unsigned int, mrpt::maps::CLandmark::TLandmarkID>& out_landmarkIDs, mrpt::math::CVectorDouble& out_fullState, mrpt::math::CMatrixDouble& out_fullCovariance ) const
Returns the complete mean and cov.
Parameters:
out_robotPose |
The mean and the 7x7 covariance matrix of the robot 6D pose |
out_landmarksPositions |
One entry for each of the M landmark positions (3D). |
out_landmarkIDs |
Each element[index] (for indices of out_landmarksPositions) gives the corresponding landmark ID. |
out_fullState |
The complete state vector (7+3M). |
out_fullCovariance |
The full (7+3M)x(7+3M) covariance matrix of the filter. |
See also:
void getCurrentRobotPose(mrpt::poses::CPose3DQuatPDFGaussian& out_robotPose) const
Returns the mean & the 7x7 covariance matrix of the robot 6D pose (with rotation as a quaternion).
See also:
getCurrentState, getCurrentRobotPoseMean
mrpt::poses::CPose3DQuat getCurrentRobotPoseMean() const
Get the current robot pose mean, as a 3D+quaternion pose.
See also:
void getCurrentRobotPose(mrpt::poses::CPose3DPDFGaussian& out_robotPose) const
Returns the mean & the 6x6 covariance matrix of the robot 6D pose (with rotation as 3 angles).
See also:
void getAs3DObject(mrpt::opengl::CSetOfObjects::Ptr& outObj) const
Returns a 3D representation of the landmarks in the map and the robot 3D position according to the current filter state.
Parameters:
out_objects |
void loadOptions(const mrpt::config::CConfigFileBase& ini)
Load options from a ini-like file/text.
const TDataAssocInfo& getLastDataAssociation() const
Returns a read-only reference to the information on the last data-association.
void getLastPartition(std::vector<std::vector<uint32_t>>& parts)
Return the last partition of the sequence of sensoryframes (it is NOT a partition of the map!!) Only if options.doPartitioningExperiment = true.
See also:
void getLastPartitionLandmarks(std::vector<std::vector<uint32_t>>& landmarksMembership) const
Return the partitioning of the landmarks in clusters accoring to the last partition.
Note that the same landmark may appear in different clusters (the partition is not in the space of landmarks) Only if options.doPartitioningExperiment = true
Parameters:
landmarksMembership |
The i’th element of this vector is the set of clusters to which the i’th landmark in the map belongs to (landmark index != landmark ID !!). |
See also:
void getLastPartitionLandmarksAsIfFixedSubmaps( size_t K, std::vector<std::vector<uint32_t>>& landmarksMembership )
For testing only: returns the partitioning as “getLastPartitionLandmarks” but as if a fixed-size submaps (size K) were have been used.
double computeOffDiagonalBlocksApproximationError(const std::vector<std::vector<uint32_t>>& landmarksMembership) const
Computes the ratio of the missing information matrix elements which are ignored under a certain partitioning of the landmarks.
See also:
getLastPartitionLandmarks, getLastPartitionLandmarksAsIfFixedSubmaps
void reconsiderPartitionsNow()
The partitioning of the entire map is recomputed again.
Only when options.doPartitioningExperiment = true. This can be used after changing the parameters of the partitioning method. After this method, you can call getLastPartitionLandmarks.
See also:
CIncrementalMapPartitioner::TOptions* mapPartitionOptions()
Provides access to the parameters of the map partitioning algorithm.
void saveMapAndPath2DRepresentationAsMATLABFile( const std::string& fil, float stdCount = 3.0f, const std::string& styleLandmarks = std::string("b"), const std::string& stylePath = std::string("r"), const std::string& styleRobot = std::string("r") ) const
Save the current state of the filter (robot pose & map) to a MATLAB script which displays all the elements in 2D.